
Formal Methods for Space at NASA Langley

Alwyn E. Goodloe
NASA Langley Research Center

Cesar Munoz
NASA Langley Research Center

Ivan Perez
KBR/NASA Ames Research Center

FM at NASA Langley Research Center

• NASA Langley is a research center
• Langley is the oldest NASA center historical focus on aeronautics research

• NASA Langley’s formal methods (FM) group dates to the 1970s with
pioneering work on fault-tolerant avionics
• Draper SIFT
• Lamport Byzantine Generals
• Formally verified clock synchronization protocols

• Two decades of applying FM to verify algorithms enabling safe airspace
operations
• Aircraft separation
• PVS theorem prover models

• Sophisticated mathematical library

• Runtime Verification Framework Copilot/Ogma

• Verification of communication protocols

• Plan Execution Interchange Language (PLEXIL)

2

Why Runtime Verification

• Mission-critical and safety-critical systems often require a high
degree of assurance

• Formal verification proves a correctness property holds for every
execution of a program
• Most software is too large , and verification requires very specialized

workforce

• Testing demonstrates correctness property holds on specific test
cases

• Runtime verification (RV) detects if a correctness property is violated
during execution and invokes procedures to steer the system into a
safe state
• A form of dynamic system verification

3

ASSURANCE

4

Prove Test Monitor

Foundations of RV

• Given a specification φ of the property we want to check
• Specification logics: linear temporal logics (LTL), regular expressions, …

• A trace τ of the execution capturing information about the state of a
system under observation (SUO)
• System must be instrumented to capture the trace

• An RV monitor checks for language inclusion τ ∊ 𝔏(φ)
• Accept all traces admitting φ

• We do this online, but offline analysis is possible

 RV frameworks synthesize monitors from specifications

5

RV in Practice

6

Monitors

System

Environment

https://photojournal.jpl.nasa.gov/catalog/PIA04413

7

Copilot:

An extensible, high-level language to specify the properties.

Ogma:

A tool to facilitate incorporating monitors into an existing system.

What’s What

RV Engineer Checklist

• Specify the property to be checked

• Identify the trace to be captured

• Synthesize a monitor that checks the property using an RV
framework

• Create handler that steers the system to a safe state when the
property is violated

• Install monitor and handler

8

Copilot

• Copilot is a language and runtime verification framework targeting hard
real-time safety-critical systems
• Collaboration between NASA Langley and NASA Ames

• Stream based specification language
• Similar to Lustre and LOLA

• Employs sampling rather than extensive code instrumentation
• Appropriate for monitoring safety of CPS systems

• Copilot specifications are translated into MISRA C99 monitors or to BlueSpec
and Verilog for implementation in FPGAs

• Effort started in 2008 as a research program
• Galois and the National Institute of Aerospace (NIA)

• Copilot and Ogma are NASA software engineering tools
• Adapted NASA Software Engineering development processes
• Open source
• Monitors classified as “Mission Support Software” and flown on NASA flights

9

10

Internal
Module

12 C 11.75 C
...

...

...
{ x: 75

, c: True

}

{ x: 88

, c: False

}

Copilot

T = 0 T = 1 ...

Stream Language

11

spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

Copilot Language

12

spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

Copilot Language

13

spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

Call ‘heatoff’ every time
that ‘prop1’ is true

Copilot Language

14

spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

True if ‘condition’ has
always been true for the
last 4 samples

Copilot Language

15

spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

External data

Boolean
condition

Copilot Language

16

data Volts = Volts

{ numVolts :: Field "numVolts" Word16

, flag :: Field "flag" Bool

}

voltage :: Stream Volts

voltage = extern “voltage” Nothing

prop :: Stream Bool

prop = voltage # numVolts > 200 && voltage # flag

Copilot: Structs

17

data Volts = Volts

{ numVolts :: Field "numVolts" Word16

, flag :: Field "flag" Bool

}

voltages :: Stream (Array 2 Volts)

voltages = extern “voltage” Nothing

prop :: Stream Bool

prop =

(voltages!0) # numVolts > (voltages!1) # numVolts

Copilot: Arrays

Ogma

18

Specificaiton Ogma

C99 Monitor

FPGA

NASA Core Flight
System (cFS)
Monitoring
Application

Robot Operating
System (ROS2)

Monitoring
Node

Fprime (JPL)

19

Monitoring RoS

Reconfigurable Networks in Space

• As space missions become more complex and longer duration, the avionics
are becoming complex distributed systems
• Expected to operate without significant downtime or human management

• Very long durations

• System architects are adopting Ethernet variants for networking
• Time-Triggered Ethernet (TTE)

• Avionics Full-Duplex Switched (AFDX) Ethernet

• Design tradeoffs favor determinism and fault tolerance
• Static network configuration enables predictable behavior

• Fixed number of network elements

• Each node maintains one or more configuration files

• Changes to the network configuration requires files be updated

• Given the long duration of space missions, how best to do the update?

20

Ways to Update Config Files

• Preplan and store all conceivable configurations
• Consumes many resources

• Assumes it is possible to plan for any scenario

• Gound based controllers could manually upload each file
• Known to be error prone

• Have astronauts manually update files
• Not practical and very error prone

• Develop a protocol that is robust to faults and failures to reconfigure
the network
• NASA researchers have developed such a protocol

• Such a protocol will need to have undergone extensive analysis
• Failure can endanger the spacecraft and/or humans onboard!!

21

Network Communication Structure

22

Roles of Nodes in System

• Ground System (GS)(Root of Trust) – Starting point of all commands
• Symmetrically omissive/Fail Silent

• Contact Coordinator (CC) – Direct connection to ground. Orchestrates
distribution of messages
• Byzantine/Fail Arbitrary

• Module Coordinator (MC) – “Regional” coordinator orchestrating
distribution of messages to a particular fault containment region (FCR)
• Only one active per region
• Byzantine/Fail Arbitrary

• Switch (SW) – Nodes that route messages, but can execute protocol
commands
• Asymmetric Omissive/Fail Arbitrary

• End System Participant (ES) - The end system nodes only accept and respond
to the protocol
• Byzantine/Fail Arbitrary

23

Protocol Structure

• The protocol is composed from a set of primitives

• Primitives are either cryptographic operations or small protocols

• Primitive protocols follow the same pattern:
• Ground system sends command to coordinator

• Coordinator running the protocol will broadcast commands to receiving
nodes

• Receiving nodes receive command and perform an operation and send a
reply to coordinator

• Ground system requests an acknowledgement

• Coordinator gathers acks from participants and sends reply to ground system

• Protocol on ground evaluates and acts on the information in the ack it
receives

24

Protocol Primitives

• Coordinator Swap (CS) – Swap out/in nodes designated as
coordinators

• Bootstrap Plane Reconfiguration (BPR) – One coordinator directs the
reconfiguration of switches in a plane

• Multi-Coordinator Bootstrap (MBPR) – Reconfigure switches using all
available coordinators

• Reliable Bootstrap Reconfiguration (RBR) – Disable planes when MBR
fails

• Consistent Broadcast (CB) – Configure end systems

• Exonerating Consistent Broadcast (ECB) – Identify faults when
configuring end systems

• Reliable Signal (RS) – Send value to nodes and verify that coordinator
sent a values all members of a group of participants

25

MCBRBPR

End System
Distribution

Reconfigure
the 1st Plane

Signal2ES:
Reconfig!

Reconfigure
the 2nd Plane

Reconfigure
the 3rd Plane

Signal2ES:
Talk Again

Flow of Top-Level Operations

Flow of Primitives that Comprise Top-Level Operations

CB RSLWS MCBR RS MCBR

Consistent
Broadcast

Exonerating
Consistent
Broadcast

Lightweight
Signature

Bootstrap
Plane

Reconfig.
Multi-coordinator

Bootstrap Reconfig.

Reliable
Signal

Start Stop

CS

ECB
CS CS CS

Coordinator
Swap

Protocol Steps

26

Assuring the Protocol (Work inProgress)

• For the primitives, developers identified several correctness
properties:
• Authenticity

• Validity

• Verifiability

• Informal proofs of correctness of individual primitives

• Developers wanted to increase confidence that there was no
unintended harmful interactions among the primitives when
composed into a larger protocol

• They asked us to help answer this question

• We are reporting on WORK IN PROGRESS

27

Modeling Process

• Construct an abstract model of the system
• Model network elements (switches, connections)

• Model protocol primitives and their composition
• Abstraction requires tradeoffs

• We are building two models using different tools making different
tradeoffs
• One model naturally synchronous, network layout changed easily, and easily

model arbitrary node failures

• The other model has more fidelity in modeling network elements, but with
fewer nodes and more difficult to change configuration

• Properties to be checked
• Do primitives interfere with each other?

• Failure modes

• Currently in early stages

28

What We Model

• Network elements - Switches, coordinators, end systems, parallel
network planes

• Coordinator Swap (CS) – Swap out/in nodes designated as
coordinators

• Consistent Broadcast (CB) – Configure end systems

• Exonerating Consistent Broadcast (ECB) – Identify faults when
configuring end systems

• Reliable Signal (RS) – Send value to nodes and verify that coordinator
sent values to each node

29

Maude

• Maude is a high-level specification language
• Developed at SRI and UIUC
• Algebraic specification language
• Term rewriting

• Maude is a typed language where the types are called Sorts
• Object oriented

• Equations create equivalent classes and substitute one equal
term with another
• eq 𝑡 = 𝑡′

• Rewriting rules transform terms in ways that do not necessarily
substitute one term for another
• Rewriting is a logic of concurrent change

• rl 𝑡1 𝑡2 … 𝑡𝑛 → 𝑡1
′ t2

′ … tm
′ .

• crl 𝑡1 𝑡2 … 𝑡𝑛 → 𝑡1
′ t2

′ … tm
′ if 𝑒 = 𝑒′.

30

Protocol Models

• Each protocol is modeled as a state machine executing at a node
• State machines defined for GS, CC, MC, SW, and ES

• Each state is a rule in the model

• Model abstracts away implementation details

• Protocols are simplified to configure one node in system

• Must limit state explosion

31

Queue in Maude

fmod QUEUE {X :: TRIV} is

 sort NeQueue{X} Queue{X} .

 subsort NeQueue{X} < Queue{X} .

 op empty : -> Queue{X} [ctor] .

 op enqueue : Queue{X} X$Elt -> NeQueue{X} [ctor] .

 op dequeue : NeQueue{X} -> Queue{X} .

 op first : NeQueue{X} -> X$Elt .

 op isEmpty : Queue{X} -> Bool .

 eq dequeue(enqueue(empty,E)) = empty .

 ceq dequeue(enqueue(Q,E)) = enqueue(dequeue(Q),E) if Q =/= empty .

 eq first(enqueue(empty,E)) = E .

 ceq first(enqueue(Q,E)) = first(Q) if Q =/= empty .

 eq isEmpty(empty) = true .

 eq isEmpty(enqueue(Q,E)) = false .

 eq isEmpty(enqueue(empty,E)) = false .

32

Channels

• Channel is an object comprised of a queue and identifiers for the end
points

 < A : Channel | queue : Q , in : B, out : C >

• All nodes in the network are connected by pairs of unidirectional
channels

• Messages are sent and received by putting them into and removing
the from channel queues

33

• Packets have source, destination, msg type, and payload

• op < _ _ _ | _ > : Address Address MsgType Payload -> Packet

• Switches move packets

• Keep more than one routing table at each switch
• Config swap

• Each table maps addresses to channel IDs

• Switch is a map of maps :

• op sw-routingtable :_ : Map{Nat , Map{Address,Oid}} -> Attribute .

• When routing a packet, select the routing table and look at the
destination of the packet in an inbound queue and lookup the
channel to put that packet in
• (RT [SelRT]) [pi-dst(first(QI))

34

Packets and Switches

Next Steps

• Explore different classes of faults

• Likely fault scenarios for MC and ES:
• Fail Omissive – a device fails to send or receive an arbitrary number of

packets

• Fail-Inconsistent – One set of receivers gets correct messages and another
gets detectably incorrect

• Fail Arbitrary - device is free to generate arbitrary packets at arbitrary points
in time. Device can fail inconsistently

• Explore statistical model checking

35

Plan Execution Interchange
Language (PLEXIL)

• A plan execution language is a
specialized language for
specifying control strategies
that command and monitor a
variety of systems such as
spacecrafts, robots,
instruments, and habitats.

• PLEXIL is a NASA-developed
plan execution language for
representing plans for
automation, as well a
technology for executing these
plans on real or simulated
systems.

K10 Rover. Credit: NASA/Ames ISS. Credit: NASA

36

Why PLEXIL

“Mars missions will see unavoidable communication delays of up to 20 minutes each way, as well
as periodic communication blackout of up to two weeks” (State-of-the-Agency for EIO)

• Autonomous plan execution is required.

• Verifiable correct planning and plan execution is essential for safety, autonomy, adaptability of
spacecraft operations on highly uncertain and hazardous environments.

PLEXIL has been used on several NASA projects, e.g., Ocean Worlds Autonomy Testbed for
Exploration Research and Simulation (OceanWATERS), Lunar Atmosphere and Dust Environment
Explorer (LADEE), Drilling Automation for Mars Exploration (DAME), Deep Space Habitat and
Habitat Demonstration Unit (DSH/HDU), and Independent Configurable Architecture for Reliable
Operations of Unmanned Systems (ICAROUS).

Why PLEXIL

37

PLEXIL Formal Interactive Verification Environment
(PLEXIL-V)

PLEXIL-V is a NASA-LaRC developed formal operational
semantics of PLEXIL, which is freely available under NASA
Open Source Agreement.

PLEXIL-V provides a reference implementation of the
PLEXIL executive.

PLEXIL-V uses theorem-proving and model-checking for
the formal verification of plans and plan executions.

PLEXIL-V

38

Verifiable Correct Plan Execution

PLEXIL
Plan

PLEXIL-V

Model-Based
Environment Generator

Model-Checker

Model-checking:
• Statistical
• Symbolic
• Hybrid

Safety
Property

Satisfied

Counter
Example

Timeout

39

FM at NASA JPL

• JPL is a space flight center focusing on robotic exploration missions
• MARS Rovers

• Deep space probes

• Small FM team whose members are often embedded with flight
software developers

• SPIN model checker developed and applied to high-profile missions
such as mars rovers

• Runtime Verification conducted offline
• RV applied to telemetry data

• PyContract, TraceContract

40

FM at NASA Ames

• Robust Software Engineering branch

• Inference Kernel for Open Static Analyzers (IKOS)
• Abstract interpretation of C programs

• Formal Requirements Elicitation Tool (FRET)
• Transforms structured English into formal specification
• Generate tests and monitors (via Copilot)
• Sophisticated user friendly interface

• Safe Deep Neural Networks (SafeDNN)
• Assurance of neural networks

• CoCoSim: Contract based Compositional verification of Simulink
models

• Java PathFinder (JPF)
• Model checking and symbolic execution

41

Questions?

42

Contact Information:

Alwyn Goodloe.
 a.goodloe@nasa.gov

Ivan Perez
ivan.perezdominguez@nasa.gov

Cesar Munoz
cesar.a.munoz@nasa.gov

mailto:a.goodloe@nasa.gov
mailto:a.goodloe@nasa.gov
mailto:a.goodloe@nasa.gov
mailto:cesar.a.munoz@nasa.gov

	Slide 1: Formal Methods for Space at NASA Langley
	Slide 2: FM at NASA Langley Research Center
	Slide 3: Why Runtime Verification
	Slide 4
	Slide 5: Foundations of RV
	Slide 6: RV in Practice
	Slide 7: What’s What
	Slide 8: RV Engineer Checklist
	Slide 9: Copilot
	Slide 10: Stream Language
	Slide 11: Copilot Language
	Slide 12: Copilot Language
	Slide 13: Copilot Language
	Slide 14: Copilot Language
	Slide 15: Copilot Language
	Slide 16: Copilot: Structs
	Slide 17: Copilot: Arrays
	Slide 18: Ogma
	Slide 19: Monitoring RoS
	Slide 20: Reconfigurable Networks in Space
	Slide 21: Ways to Update Config Files
	Slide 22: Network Communication Structure
	Slide 23: Roles of Nodes in System
	Slide 24: Protocol Structure
	Slide 25: Protocol Primitives
	Slide 26: Protocol Steps
	Slide 27: Assuring the Protocol (Work inProgress)
	Slide 28: Modeling Process
	Slide 29: What We Model
	Slide 30: Maude
	Slide 31: Protocol Models
	Slide 32: Queue in Maude
	Slide 33: Channels
	Slide 34: Packets and Switches
	Slide 35: Next Steps
	Slide 36: Plan Execution Interchange Language (PLEXIL)
	Slide 37: Why PLEXIL
	Slide 38: PLEXIL Formal Interactive Verification Environment (PLEXIL-V)
	Slide 39: Verifiable Correct Plan Execution
	Slide 40: FM at NASA JPL
	Slide 41: FM at NASA Ames
	Slide 42: Questions?

