
Formal Methods for Space at NASA Langley 

Alwyn E. Goodloe
NASA Langley Research Center

Cesar Munoz 
NASA Langley Research Center

Ivan Perez 
KBR/NASA Ames Research Center



FM at NASA Langley Research Center 

• NASA Langley is a research center
• Langley is the oldest NASA center historical focus on aeronautics research 

• NASA Langley’s formal methods (FM) group dates to the 1970s with 
pioneering work on fault-tolerant avionics  
• Draper SIFT
• Lamport Byzantine Generals 
• Formally verified clock synchronization  protocols

• Two decades of applying FM to verify algorithms enabling safe airspace 
operations 
• Aircraft separation
• PVS theorem prover  models 

• Sophisticated mathematical library 

• Runtime Verification Framework Copilot/Ogma

• Verification of communication protocols 

• Plan Execution Interchange Language (PLEXIL)
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Why Runtime Verification

• Mission-critical and safety-critical systems often require a high 
degree of assurance 

•  Formal verification proves a correctness property holds for every 
execution of a program 
• Most software is too large , and verification requires very specialized 

workforce

• Testing demonstrates correctness property holds on specific test 
cases

• Runtime verification (RV) detects if a correctness property is violated 
during execution and invokes procedures to steer the system into a 
safe state
• A form of dynamic system verification
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ASSURANCE
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Prove Test Monitor



Foundations of RV

• Given a specification φ of the property we want to check
• Specification logics: linear temporal logics (LTL), regular expressions, …

• A trace τ of the execution capturing information about the state  of a 
system under observation (SUO) 
• System must be instrumented to capture the trace

• An RV monitor checks for language inclusion τ ∊ 𝔏(φ)
• Accept all traces admitting φ

• We do this online, but offline analysis is possible 

              RV frameworks synthesize monitors from specifications
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RV in Practice 
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System 

Environment 

https://photojournal.jpl.nasa.gov/catalog/PIA04413
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Copilot:

An extensible, high-level language to specify the properties.

Ogma:

A tool to facilitate incorporating monitors into an existing system.

What’s What



RV Engineer Checklist 

• Specify the property to be checked 

• Identify the trace to be captured 

• Synthesize a monitor that checks the property using an RV 
framework 

• Create handler that steers the system to a safe state when the 
property is violated

• Install monitor and handler
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Copilot 

• Copilot is a language and  runtime verification framework targeting  hard 
real-time safety-critical systems
• Collaboration between NASA Langley and NASA Ames 

• Stream based specification language
•  Similar to Lustre and LOLA

• Employs sampling rather than extensive code instrumentation
•  Appropriate for monitoring safety of CPS systems

• Copilot specifications are translated into MISRA C99 monitors or to BlueSpec 
and Verilog for implementation in FPGAs

• Effort started in 2008 as a research program 
• Galois and the National Institute of Aerospace (NIA)

• Copilot and Ogma are NASA software engineering tools
• Adapted NASA Software Engineering development processes 
• Open source 
• Monitors  classified as “Mission Support Software” and flown on NASA flights
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spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

Copilot Language 



12 

spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

Copilot Language 
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spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

Call ‘heatoff’ every time 
that ‘prop1’ is true

Copilot Language 
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spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

True if ‘condition’ has 
always been true for the 
last 4 samples

Copilot Language 
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spec =

trigger "heatoff" prop1 [arg medaAirTemperature]

prop1 :: Stream Bool

prop1 = alwaysBeen 0 3 condition

condition :: Stream Bool

condition = temperatureDiff > 25

temperatureDiff :: Stream Int32

temperatureDiff = medaAirTemperature - medaLastTemperature

medaAirTemperature :: Stream Int32

medaAirTemperature = extern “temperature" Nothing

medaLastTemperature :: Stream Int32

medaLastTemperature = [0] ++ medaAirTemperature

External data

Boolean 
condition

Copilot Language
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data Volts = Volts

{ numVolts :: Field "numVolts" Word16

, flag     :: Field "flag"     Bool

}

voltage :: Stream Volts

voltage = extern “voltage” Nothing

prop :: Stream Bool

prop = voltage # numVolts > 200 && voltage # flag

Copilot: Structs 
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data Volts = Volts

{ numVolts :: Field "numVolts" Word16

, flag     :: Field "flag"     Bool

}

voltages :: Stream (Array 2 Volts)

voltages = extern “voltage” Nothing

prop :: Stream Bool

prop =

(voltages!0) # numVolts > (voltages!1) # numVolts

Copilot: Arrays



Ogma 
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Specificaiton Ogma

C99 Monitor 

FPGA

NASA Core Flight 
System (cFS) 
Monitoring 
Application 

Robot Operating 
System (ROS2)

Monitoring 
Node

Fprime (JPL)
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Monitoring RoS



Reconfigurable Networks in Space 

• As space missions become more complex and longer duration, the avionics 
are becoming complex distributed systems 
• Expected to operate without significant downtime or human management 

• Very long durations 

• System architects are adopting Ethernet variants for networking 
• Time-Triggered Ethernet  (TTE)

• Avionics Full-Duplex Switched (AFDX) Ethernet 

• Design tradeoffs favor determinism and fault tolerance 
• Static network configuration enables predictable behavior 

• Fixed number of network elements 

• Each node maintains one or more configuration files 

• Changes to the network configuration requires files be updated 

• Given the long duration of space missions, how best to do the update? 
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Ways to Update Config Files

• Preplan and store all conceivable configurations
• Consumes many resources

• Assumes it is possible to plan for any scenario 

•  Gound based controllers could manually upload each file 
• Known to be error prone 

• Have astronauts manually update files 
• Not practical and very error prone 

• Develop a protocol that is robust to faults and failures to reconfigure 
the network 
• NASA researchers have developed such a protocol 

•  Such a protocol will need to have undergone extensive analysis
• Failure can endanger the spacecraft and/or humans onboard!!
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Network Communication Structure 
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Roles of Nodes in System

• Ground System (GS)(Root of Trust) – Starting point of all commands
• Symmetrically omissive/Fail Silent 

• Contact Coordinator (CC) – Direct connection to ground. Orchestrates 
distribution of messages
• Byzantine/Fail Arbitrary 

• Module Coordinator (MC) – “Regional” coordinator  orchestrating 
distribution of messages to a particular fault containment region (FCR)
• Only one active per region 
• Byzantine/Fail Arbitrary 

• Switch (SW)  – Nodes that route messages, but can execute protocol 
commands
• Asymmetric Omissive/Fail Arbitrary 

• End System Participant (ES) - The end system nodes only accept and respond 
to the protocol
• Byzantine/Fail Arbitrary 
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Protocol Structure 

• The protocol is composed from a set of primitives 

• Primitives are either cryptographic operations or small protocols 

• Primitive protocols follow the same pattern:
• Ground system sends command to coordinator 

• Coordinator running the protocol will broadcast commands to receiving 
nodes

• Receiving nodes receive command and perform an operation and send a 
reply to coordinator

• Ground system requests an acknowledgement 

• Coordinator gathers acks from participants and sends reply to ground system 

• Protocol on ground evaluates and acts on the information in the ack it 
receives 
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Protocol Primitives 

• Coordinator Swap (CS) – Swap out/in nodes designated as 
coordinators

• Bootstrap Plane Reconfiguration (BPR) – One coordinator directs the 
reconfiguration of switches in a plane

• Multi-Coordinator Bootstrap (MBPR) – Reconfigure switches using all 
available coordinators 

• Reliable Bootstrap Reconfiguration  (RBR) – Disable planes when MBR 
fails

• Consistent Broadcast (CB) – Configure end systems 

• Exonerating Consistent Broadcast (ECB) – Identify faults when 
configuring end systems

• Reliable Signal (RS) – Send value to nodes and verify that coordinator 
sent a values all members of a group of participants 
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MCBRBPR

End System 
Distribution

Reconfigure 
the 1st Plane

Signal2ES: 
Reconfig!

Reconfigure 
the 2nd Plane

Reconfigure 
the 3rd Plane

Signal2ES: 
Talk Again

Flow of Top-Level Operations

Flow of Primitives that Comprise Top-Level Operations
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Lightweight 
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Bootstrap 
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Reconfig.
Multi-coordinator 

Bootstrap Reconfig.

Reliable 
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Start Stop
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CS CS CS

Coordinator 
Swap

Protocol Steps
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Assuring the Protocol (Work inProgress)

• For the primitives, developers identified several correctness 
properties:
• Authenticity 

• Validity

• Verifiability 

• Informal proofs of correctness of individual primitives  

• Developers wanted to increase confidence that there was no 
unintended harmful interactions among the primitives when 
composed into a larger protocol

• They asked us to help answer this question 

•  We are reporting on WORK IN PROGRESS
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Modeling  Process

•  Construct an abstract model of the system
• Model network elements (switches, connections) 

• Model protocol primitives and their composition 
• Abstraction requires tradeoffs

• We are building two models using different tools making different 
tradeoffs
• One model naturally synchronous, network layout changed easily, and  easily 

model arbitrary node failures

• The other model  has more fidelity in modeling network elements, but  with 
fewer nodes and more difficult to change configuration 

• Properties to be checked
• Do primitives interfere with each other?

• Failure modes

• Currently in early stages  
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What We Model 

• Network elements  - Switches, coordinators, end systems, parallel 
network planes 

• Coordinator Swap (CS) – Swap out/in nodes designated as 
coordinators

• Consistent Broadcast (CB) – Configure end systems 

• Exonerating Consistent Broadcast (ECB) – Identify faults when 
configuring end systems

• Reliable Signal (RS) – Send value to nodes and verify that coordinator 
sent values to each node
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Maude

• Maude is a high-level specification language
• Developed at SRI and UIUC 
• Algebraic specification language 
• Term rewriting  

• Maude is a typed language where the types are called Sorts
• Object oriented  

• Equations create equivalent classes and substitute one equal 
term with another
•  eq 𝑡 = 𝑡′

• Rewriting rules transform terms in ways that do not necessarily 
substitute one term for another
• Rewriting is a logic of concurrent change

•  rl 𝑡1 𝑡2 … 𝑡𝑛  → 𝑡1
′  t2

′  … tm
′  . 

• crl 𝑡1 𝑡2 … 𝑡𝑛  → 𝑡1
′  t2

′  … tm
′  if  𝑒 = 𝑒′. 
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Protocol Models

• Each protocol is modeled as a state machine executing at a node
• State machines defined for GS, CC, MC, SW, and ES

• Each state is a rule in the model

• Model abstracts away implementation details

• Protocols are simplified to configure one node in system

• Must limit state explosion 
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Queue in Maude

fmod QUEUE {X :: TRIV} is 

  sort NeQueue{X} Queue{X} .

  subsort NeQueue{X} < Queue{X} .

  op empty : -> Queue{X} [ctor] .

  op enqueue : Queue{X} X$Elt -> NeQueue{X} [ctor] .

  op dequeue : NeQueue{X} -> Queue{X} .

  op first : NeQueue{X} -> X$Elt .

  op isEmpty : Queue{X} -> Bool .

  

  eq dequeue(enqueue(empty,E)) = empty .

  ceq dequeue(enqueue(Q,E)) = enqueue(dequeue(Q),E) if Q =/= empty .

  eq first(enqueue(empty,E)) = E .

  ceq first(enqueue(Q,E)) = first(Q) if Q =/= empty .

  eq isEmpty(empty) = true .

  eq isEmpty(enqueue(Q,E)) = false .

  eq isEmpty(enqueue(empty,E)) = false . 
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Channels 

• Channel is an object comprised of a queue and identifiers for the end 
points

                       <  A : Channel  | queue : Q ,  in : B,  out : C   >

• All nodes in the network are connected by pairs of unidirectional 
channels

• Messages are sent and received by putting them into and removing 
the from channel queues 
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• Packets have source, destination, msg type, and payload 

• op < _ _ _ | _ > : Address Address MsgType Payload  -> Packet  

• Switches move packets 

• Keep more than one routing table at each switch 
• Config swap 

• Each table maps addresses to channel IDs 

• Switch is a map of maps :

• op sw-routingtable :_ : Map{Nat , Map{Address,Oid}}  -> Attribute .

• When routing a packet, select the routing table and look at the 
destination of the packet in an inbound queue and lookup the 
channel to put that packet in 
• (RT [SelRT]) [pi-dst(first(QI))

34

Packets and Switches 



Next Steps 

• Explore different classes of faults

• Likely fault scenarios for MC and  ES: 
• Fail Omissive – a device fails to send or receive an arbitrary number of 

packets

• Fail-Inconsistent – One set of receivers gets correct messages and another 
gets detectably incorrect

• Fail Arbitrary -   device is free to generate arbitrary packets at arbitrary points  
in time. Device can fail inconsistently

• Explore statistical model checking  
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Plan Execution Interchange 
Language (PLEXIL)

• A plan execution language is a 
specialized language for 
specifying control strategies 
that command and monitor a 
variety of systems such as 
spacecrafts, robots, 
instruments, and habitats. 

• PLEXIL is a NASA-developed 
plan execution language for 
representing plans for 
automation, as well a 
technology for executing these 
plans on real or simulated 
systems.

K10 Rover. Credit: NASA/Ames ISS. Credit: NASA
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Why PLEXIL

“Mars missions will see unavoidable communication delays of up to 20 minutes each way, as well 
as periodic communication blackout of up to two weeks” (State-of-the-Agency for EIO)

• Autonomous plan execution is required.

• Verifiable correct planning and plan execution is essential for safety, autonomy, adaptability of 
spacecraft operations on highly uncertain and hazardous environments. 

PLEXIL has been used on several NASA projects, e.g., Ocean Worlds Autonomy Testbed for 
Exploration Research and Simulation (OceanWATERS), Lunar Atmosphere and Dust Environment 
Explorer (LADEE), Drilling Automation for Mars Exploration (DAME), Deep Space Habitat and 
Habitat Demonstration Unit (DSH/HDU), and Independent Configurable Architecture for Reliable 
Operations of Unmanned Systems (ICAROUS).

Why PLEXIL
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PLEXIL Formal Interactive Verification Environment 
(PLEXIL-V)

PLEXIL-V is a NASA-LaRC developed formal operational 
semantics of PLEXIL, which is freely available under NASA 
Open Source Agreement.

PLEXIL-V provides a reference implementation of the 
PLEXIL executive. 

PLEXIL-V uses theorem-proving and model-checking for 
the formal verification of plans and plan executions. 

PLEXIL-V 
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Verifiable Correct Plan Execution

PLEXIL
Plan

PLEXIL-V

Model-Based
Environment Generator

Model-Checker

Model-checking:
• Statistical
• Symbolic
• Hybrid

Safety 
Property

Satisfied

Counter
Example

Timeout
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FM at NASA JPL

• JPL is a space flight center focusing on robotic exploration missions
• MARS Rovers

• Deep space probes 

• Small FM team whose members are often embedded with flight 
software developers

• SPIN model checker developed and applied to high-profile missions 
such as mars rovers 

• Runtime Verification conducted offline
• RV applied to telemetry data

• PyContract, TraceContract 
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FM at NASA Ames

• Robust Software Engineering branch 

• Inference Kernel for Open Static Analyzers (IKOS) 
• Abstract interpretation of C programs

• Formal Requirements Elicitation Tool (FRET)
• Transforms structured English into formal specification  
• Generate tests and monitors (via Copilot)
• Sophisticated user friendly interface 

• Safe Deep Neural Networks (SafeDNN) 
• Assurance of neural networks

• CoCoSim: Contract based Compositional verification of Simulink 
models

• Java PathFinder (JPF)
• Model checking and symbolic execution 
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Questions?
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Contact Information:

Alwyn Goodloe. 
 a.goodloe@nasa.gov 

Ivan Perez
ivan.perezdominguez@nasa.gov

Cesar Munoz 
cesar.a.munoz@nasa.gov
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