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ABSTRACT

The so-called "New Space era” has seen a disruptive change in the business models and manufacturing
technologies of launch vehicle companies. However, limited consideration has been given to the benefits
that innovation in control theory can bring; not only in terms of increasing the limits of performance
but also reducing mission preparation or “missionisation” efforts. Moreover, there is a gap between the
current state-of-practice that still relies on linear controls and other modern control techniques that could
bring relevant improvements in launcher attitude control; this is the case for nonlinear control algorithms,
especially those based on Nonlinear Dynamic Inversion (NDI). NDI is a technique that basically ‘cancels’
the nonlinearities of a class of nonlinear systems, allowing for a single linear control law to be applied
without the need for gain-scheduling across different operational points. Incremental NDI (INDI) is a
variation of NDI that generates incremental commands and employs acceleration feedback to reduce model
dependency, making it easier to design, and results in being more robust in closed-loop. While INDI has
been applied successfully to several aerospace applications, its applicability to launch vehicles has not yet
been adequately investigated. The objective of this paper is therefore to introduce and raise awareness of
the INDI method among the launcher guidance, navigation, and control (GNC) community, showcasing its
implementation on a representative launch ascent application scenario which highlights INDI’s strengths
and challenges. We present a new, practical approach for stability analysis of INDI for attitude control, and
compare INDI with scheduled PD controllers with- and without angular acceleration estimates. Results
show that, while INDI controllers are generally more sensitive to sensor noise and actuator delay than linear
controllers, their potential benefits outweigh these limitations in terms of robustness and performance.

1 INTRODUCTION

1.1 Background and Motivation

The space industry has undergone significant changes in recent years with the advent of the “New
Space era” marked by disruptive changes in the business models, manufacturing technologies, and
agile practices of launch vehicle companies; all aimed at minimising their production and operating
costs in an ever more competitive market. However, limited attention has been given to the benefits of
control theory innovation in this context despite the potential for such innovations to increase perfor-
mance limits and reduce mission preparation (or “missionisation”) efforts. Moreover, government-led
developments of recent launchers such as Ares I and VEGA still use the same design approach of the
Saturn V, i.e. linear controllers [1]. This approach relies on single channel-at-a-time tuning and ad—
hoc gain-scheduling followed by extensive validation and verification (V&V); these are in fact quite
time- and cost-consuming processes.
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In contrast to the approach presented above, the past few years have seen a growing interest in the
application of artificial intelligence and machine learning methods for launcher GNC, but the indus-
trial use of such data-driven/model-free methods remains limited by well-known issues related to
training and certification of the algorithms on the full flight envelope of intended operation. In that
sense, there is a clear gap between these strategies and the current state-of-practice, in which other
techniques could bring relevant improvements; this is the case for nonlinear control algorithms, espe-
cially those based on Nonlinear Dynamic Inversion (NDI). On one hand, agile practices of New Space
companies provide the ideal opportunity to explore the benefits of this type of design approach. On
the other hand, a successful adoption of nonlinear launcher control will likely facilitate the augmen-
tation with and transition to data-driven methods in the future. This is therefore our motivation and
aim for this paper, to start bridging the gap between these two approaches while presenting a potential
alternative based on incremental nonlinear control.

1.2 Related Work

In this paper we introduce briefly and focus on (Incremental) Nonlinear Dynamic Inversion (NDI)
which is a control design method based on feedback linearisation (2, 3]; it basically consists on a
nonlinear (state feedback) transformation that linearises the nominal system dynamics, and a linear
part that imposes the desired closed-loop dynamics. Actually, NDI is a very well known and applied
(nonlinear) control technique in the aerospace field, especially in aeronautics for various flight control
applications [4—7]. Successful implementation of NDI requires a match between the onboard model
and the system model, and accurate knowledge of all nonlinearities, which is often not the case in
reality; this results in poor robustness properties because they rely on exact availability of the sys-
tem dynamics. This highlights the need for robustness in these methodologies, as the inner-loop of
the control system is critical and can be compromised by model and sensor uncertainties, potentially
affecting stability and performance. In this regard, alternative methods involving robustness and im-
provements of the method for NDI-based flight control applications were considered, among many
others, in [8-12].

A successful technique that became popular in the recent years for aerospace applications is Incre-
mental Nonlinear Dynamics Inversion (INDI). The concept using incremental nonlinear control was
first developed in the late nineties and was initially focused on the ‘implicit’ dynamic inversion for
DI-based flight control. The works of Smith, Bacon, and others laid the foundation for these de-
velopments [5, 10], for which the term ‘incremental’ is now more commonly used to describe this
methodology as it better reflects the nature of these control laws [13—15]. Those early studies fur-
ther developed the incremental approach and, since then, it has been further elaborated theoretically
and successfully applied in various high-performance systems including fault-tolerant control of air-
craft subjected to sensor and actuator faults [16, 17], in practice for quadrotors using adaptive con-
trol [18, 19], in real flight tests of small (unmanned) and business jet (Cessna Citation 11, PH-LAB)
aircraft [20-22], but also for spacecraft attitude control [23-25]. However, its applicability to launch
and re-entry vehicles has not been fully investigated but only considered in [26-28], and planned
to be flight-tested in the upcoming ‘Reusability Flight Experiment (ReFEx) by DLR [29]. These
related works have demonstrated INDI’s performance and robustness against aerodynamic model un-
certainties and disturbance rejection for several aerospace vehicles; hence, the potential benefits of
INDI are quite relevant for reusable launchers which have much tighter dynamical couplings between
online-generated trajectory and attitude control during descent flight. Moreover, due to the nonlinear
nature of INDI, it has been proven difficult to attain an analytical proof of stability which has been
derived in [30]. With this paper we aim for further close this gap towards the application of INDI
for launchers with special focus on the ascent of a TVC-controlled launcher and also aim to present a
new, practical approach for stability analysis of such INDI control laws applied for attitude control.
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1.3 Objectives and Outline

It is therefore the objective of this study to introduce and raise awareness of the INDI technique
among the launcher GNC community, to showcase its implementation on a representative application
scenario, and to highlight its strengths and challenges in the face of the industrial state-of-practice.
To achieve this, the paper provides a concise description of the NDI and INDI approach, followed by
the detailed design and comparison of different control laws: linear, linear with angular acceleration
feedback and INDI-based. Furthermore, the paper is also aimed to address the (mainly) two well-
known challenges associated with the practical implementation of INDI-based control:

* Sensitivity to sensor noise and actuator delay. By relying on angular acceleration and control
input measurements/estimates, INDI controllers are generally more sensitive to sensor noise
and actuator delay than classical controllers. To assess the severity of this challenge, the paper
shows a comprehensive nonlinear simulation campaign with wind disturbances, uncertainties,
as well as different levels of sensor noise and actuator delay. These simulations serve as a basis
to analyse the sensitivity to sensor noise and actuator delay in comparison to more classical
approaches and we showcase how to remediate or tackle these issues properly.

* Nonlinear stability analysis. The second challenge of INDI is that, due to its nonlinear nature,
attaining an analytical proof of stability is not trivial [30]. For this second challenge, the paper
proposes a simple yet insightful linearisation-based approach to evaluate stability degradation
related to an inexact feedback linearisation and to deviations from the control tuning conditions.
This method provides a new way to analyse and evaluate stability analysis of the nonlinear
controller using linear control techniques; since INDI is designed from the theory of feedback
linearisation, this approach is very intuitive in the sense it provides a measure of degradation
with respect to the feedback linearised plant and linear stability analysis can be performed.

To demonstrate the benefits and challenges of the INDI approach, we showcase the method within an
application scenario consisting of a launcher model during ascent flight while featuring attitude and
lateral drift degrees-of-freedom, actuator dynamics, and moving-mass effects. All the controllers and
filters are implemented at a sampling frequency that is compatible with current onboard capabilities
(25 Hz).

The outline of this paper is as follows. A brief introduction to Nonlinear Dynamic Inversion (NDI)
and Incremental NDI is presented in Sec. 2. Section 3 presents the modelling aspects of the launcher
application in consideration and describes the simulator used for the attitude control design and test-
ing. Launcher attitude control designs including angular acceleration feedback are presented in Sec. 4.
Time-domain robust performance results and analysis of the obtained simulations comparing the con-
trollers studied are presented in Sec. 5, while Sec. 6 presents the frequency-domain stability results
and analysis. Conclusions are finally presented in Sec. 7.

2 BASIC PRINCIPLES OF INCREMENTAL) NONLINEAR DYNAMIC INVERSION

2.1 Nonlinear Dynamic Inversion (NDI)

Without loss of generality, we consider a multiple-input and multiple-output (MIMO) system whose
number of inputs are equal to the number of outputs in order to avoid control allocation and internal
dynamics problems. Let’s also assume momentarily that the nonlinear system can be described affine
in the inputs as:

= f(x)+g(x)u (la)
y =h(z) (1b)

where € R" is the state vector, w € R is the control input vector, and y € R™ is the system output
vector, the functions f(x) and h(x) are assumed to be smooth vector fields on R"™, and g(x) € R"*™
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is a matrix whose columns are also assumed as smooth vector fields g;. For these systems, the vector
of relative degree represents the number of differentiations of each output y;, ¢ = 1,...,m, that are
needed for the input to appear [2, 3]. In this brief introduction to NDI we consider y = x so that the
relative degree of each of the outputs y; is one; for a detailed explanation of NDI for higher relative
degrees including the transformation of the nonlinear system into a normal form decomposed into an
external (input—output) part and an internal (unobservable) part, the reader is referred to [25, 30].
Nonlinear Dynamic Inversion (NDI) is a technique that aims to eliminate the nonlinearities present
in a given nonlinear system, resulting in closed-loop dynamics that can be expressed in a linear form.
To achieve this, the nonlinear system is inverted into a linear structure using state feedback, making
it possible to apply conventional linear controllers. However, NDI has a significant disadvantage
in that it relies on the fundamental assumption that the system model is known exactly, making it
vulnerable to uncertainties. Additionally, NDI assumes that the system state is fully and accurately
known, which can be challenging to achieve in practice. NDI involves applying the following input
transformation [2, 3]:

Ueng = g () (v — f()) 2)

which cancels all nonlinearities in closed-loop, and a simple linear input-output relationship between
the new virtual control input v and the output y is obtained:

y=v 3)

In addition to being linear, an interesting feature of this relationship is that it is also decoupled, mean-
ing that the input v; only affects the output y;. This property gives rise to the so-called “decoupling
control law” to describe the input transformation in (2), and the resulting linear system in (3) is re-
ferred to as a ““single-integrator” form. By utilising appropriate (linear, robust) control techniques, the
single-integrator form in (3) can be rendered exponentially stable. For instance, the single-integrator
can be made exponentially stable through the use of:

V= ydes = ycmd + KP € (4)

where v = Y, defines the desired dynamics for the output vector or control variables. The feed-
forward term for tracking is given by vy, 4, While e = y_,4 — vy represents the error vector. Here,
Y.ma denotes the (smooth) desired output vector, which is (in this case, since relative degree is one)
at least once differentiable. The gain matrix Kp € R™*™ is used to ensure that the polynomials

given by s + Kp, fori = 1,...,m, become Hurwitz. The diagonal elements K p, of K p are then
selected accordingly. As a result of using (4), the desired error dynamics ¢; + Kp, e; = 0, become
exponentially stable and decoupled, leading to e;(t) — 0 fori =1,...,m.

2.2 Incremental Nonlinear Dynamic Inversion (INDI)

Incremental nonlinear dynamic inversion (INDI) consists on the application of NDI to a system ex-
pressed in an incremental form [14, 15, 30]. To obtain a system in incremental form, first we intro-
duce a sufficiently small time—delay \ and define the following deviation variables &, := @ (t — \),
xo := x(t—\), and uy := u(t — \), which are the \-time—delayed signals of the current state deriva-
tive @ (t), state x(t), and control u(t), respectively [24]. Moreover, we will denote Az := & — @y,
Ax := x — xy, and Au := u — ug as the incremental state derivative, the incremental state, and
the so—called incremental control input, respectively. Subsequently, we consider a first-order Taylor
series expansion of &, not in the geometric sense, but with respect to the newly introduced time—delay
Aas [14, 15, 24, 30]:

T = xp+ (9% [f(z) + g(x)u] wszAa: +g(xo)Au + H.O.T )

u=ug

= &g+ g(xo)Au + N(x, \)
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with:

&y = f(x0) + g(To)uo (6a)
N(z,)\) = a% fla) + g(a:)u] rs, AT+ HOT (6b)

which represents a residual containing the Jacobian linearisation of the on-board model and the higher
order terms (H.O.T) of the series expansion. Notice that the model-based control effectiveness g(x)
is sampled at the previous incremental time. This means an approximate linearisation about the
A—delayed signals is performed incrementally, and not with respect to a particular equilibrium or
operational point of interest. Further, we consider the following time-scale separation assumption:

For a sufficiently small time-delay )\ and for any incremental control input, it is assumed that Ax
does not vary significantly during ). In other words, the input rate of change is much faster than the
state rate of change:

EINDITss(t) = Ax =T — Xy g07 V Au (7)

which leads to:

&= o+ g(@o) - (u—uo) + N(z,\)
~0
or simply:
Ai = g(zo) - Au @®)

This assumption, corroborated by the fact that the perturbation term IN (x, \) satisfies [30]:

lim | N (, )], = 0, Ve 9)

implies that the nonlinear system dynamics in its incremental form is approximated at each time-step
by the model-based control effectiveness g(x,). Finally, applying NDI to the system based on the
approximation (8) results in a relation between the incremental control input and the output of the
system:

U = Uy + g(mo)_l(l/ — iBo) (10)

and noticing that while implementing this control law it will be required the availability of x( and that
the incremental input u is obtained from the output of the actuators or estimated from an actuator
dynamical model; recall it has been assumed that a commanded control is achieved sufficiently fast
in regards to the actuator dynamics. The total control command along with the obtained linearising
control uy = u(t — \) can be rewritten as:

w(t) = u(t — \) + g(xo) v — z(t — \)]. (11)

This improves the robustness of the closed-loop system as compared with conventional NDI since
dependency on the accurate knowledge of the plant dynamics is reduced; more specifically, the de-
pendency on accurate knowledge of the dynamic model in f(x) is largely decreased. Therefore, the
INDI control law design is more dependent on accurate measurements or accurate estimates of x,
the state derivatives, and w, the incremental control input, respectively.
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3 LAUNCHER MODEL AND SIMULATOR DESCRIPTION

The present study relies on a conventional 3 degrees-of-freedom launcher model in ascent flight fea-
turing lateral drift z and pitch 6 dynamics, as schematised in Fig. 1. These dynamics, representing
the first/second time-derivatives of z as {w = 2, w = Z} and the first/second time-derivatives of 6 as

{¢= 0, = 9}, are governed by the well-known nonlinear Newton-Euler equations:

mw = F,+ F.+ F,—mgsinf (12)
Jqg = M,+ M.+ M, (13)
where m, J and g are the launcher’s mass, lateral moment of inertia and gravity acceleration, {F,,

M, } are the aerodynamic force/torque, { Fi., M.} are the TVC-induced force/torque and { F,,, M, }
are the nozzle moving-mass effects, also known as tail-wags-dog (TWD).

Figure 1: Launcher model diagram

The aerodynamic force and torque are computed as:

F, = —SCy,Qa (14)
M, = —I,F, (15)

where S, Cy,, and [, are the reference aerodynamic area, lateral force gradient and aerodynamic arm
(distance between the launcher’s centres of pressure and gravity). Q« is the aerodynamic load indica-
tor, defined as the product between aerodynamic pressure and angle of attack, which are respectively
given by:

1
Q = v (16)
_loz - Uw
a = Q—i-arctan% (17)

where p is the air density, V' is the total airspeed and vy, 1s the lateral wind turbulence speed. The term
loq is often known as aerodynamic damping.
The TVC-induced force and torque are computed as:

F. = —Tsing (18)
M. loF (19)
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where 7' is the thrust magnitude, /. is the TVC arm (distance between the launcher’s centre of gravity
and nozzle’s pivot point) and (3 is the TVC deflection angle.
Finally, the nozzle TWD effects are computed as:

F, = —mulf (20)
M, = I.F,—J.3 (21)

where m,, is the nozzle moving-mass, [, is the moving-mass arm (distance between the nozzle’s centre
of gravity and pivot point), 3 is the TVC deflection acceleration and .J,, is the nozzle moment of inertia
with respect to the pivot point (not to the centre of gravity).

Most of the model’s parameters vary along the launcher’s trajectory (this dependence was not ev-
idenced in the previous equations for the sake of readability) and are highly uncertain. These pa-
rameters were extracted as a function of time from the simulator presented in [31] for a 80 seconds
trajectory. The uncertainty levels assumed in this study are summarised in Table 1.

Table 1: Uncertainty level per type of parameter

Type of parameters Variables Uncertainty level
Aerodynamics Cnyslas ps V 20%
Mass/propulsion m, J, l., T 10%

Note that while mass/propulsion parameters have an explicit dependency on time, related to the way
the propellant burns, aerodynamics parameters have an implicit dependency through intermediate
quantities such as altitude and Mach number.
In addition to the launcher model described above, the present study considers the dynamical effects
of TVC actuation and wind turbulence. Both effects are modelled as time-invariant transfer functions
for the sake of simplicity without loss of generality. The TVC dynamics corresponds to a second-order
system given by: ,
67.8
Crvels) = T 509 1 678

where s represents the Laplace variable. The wind turbulence speed v, is modelled by colouring a
white noise signal through a first-order Dryden filter [32] given by:

(22)

3.54
Guls) = S 03 (23)

The launcher, TVC and wind models were put together in a simulator that allows to quickly analyse
and compare several control systems, which is illustrated in Fig. 2. In this figure, different simulation
rates are highlighted using different colours: black for the continuous-time dynamics, red for GNC
computations (fgne = 25 Hz, which is well representative of current onboard capabilities) and green
for wind noise generation ( f,, = 20 Hz in this case).

For control design purposes, it is also convenient to define a linear model that fully captures the
driving dynamics of Eq. (12) and (13). To do so [33], consider the following coefficients relative to
the rotational motion:

B [QSCh, l.r B Mmuplyle + Jy
Mo = 7 ) e T Hn = 7

(24)

and to the translational motion:

_ QSCy,

m

N (25)

T Myply
) nn =
m

m
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Figure 2: Launcher simulator diagram

Using these coefficients, the transfer functions §(s) — 6(s) and 5(s) — w(s) correspond to the
solutions of the system:

0(s)
24 Moo _Ha 2
e VoI ol |28 :—[Nni”s] (26)
—lg—=8+ng +gsinfy s+ — w(s) MnS™ + Ne
v V2 LB6)

Furthermore, as a first approximation for attitude control design purposes, drift and TWD dynamics
can be neglected and the transfer function 5(s) — 6(s) simplifies into:
0
() o o @7)
B(s) s2 + laVas — o

4 LAUNCHER CONTROL DESIGN USING ANGULAR ACCELERATION FEEDBACK

This section describes and justifies the four attitude control systems developed in this study.

4.1 Scheduled PD controller

The baseline controller for this study is a classic proportional-derivative (PD) controller with the
following structure:

B(s) = kp <ecmd(s) . e(s)) — kp q(s) = kp Ooma(s) — (kp +s kD)e(s) (28)

Despite their simplicity, PD controllers represent the industrial state-of-practice for the vast majority
of launch vehicles [1]. The gains kp and kp can be tuned using a multitude of methods. Here,
they are selected based on pole placement of the closed-loop transfer function, which is obtained by
substituting Eq. (28) in (27):
(s) _ pckp (29)
ecmd(S) 52 + (la% - ,uckD>S - (,uoz + chP>

It is clear from this equation that kp and kp can be chosen so as to enforce the desired natural
frequency wy and damping ratio ¢ (here assumed constant throughout the flight for simplicity without
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loss of generality). It is also clear that this approach does not allow to specify the steady-state gain
(when s — 0) independently of the natural frequency as they both depend on kp only.

In order to handle the wide variation of the model’s parameters during the flight, the two gains need
to be scheduled throughout the trajectory. To do so, they are pre-computed for a grid of N = 9 points
(spaced every 10 seconds along the trajectory) as:

. 1 . . 1 2 Hal] .
kpli] = ——_(ua[z] +w2>, kpli] = +<la[@]—, - 2Cw9>, i=1,.,N (30)
11c[] o fic[1] Vil
and then linearly interpolated online during the simulation. The robustness of this approach can be
increased by scheduling the controller with respect to online measurements/estimates of some of the
model’s parameters. This is the underlying idea of LPV control [34], which is outside the scope of
this paper.

4.2 INDI controller

In this section, an INDI-based control law is developed and applied to regulate the launcher’s attitude
channel, i.e. to:

y=h(z)=q (31)
where x represents the state vector. In order to apply the INDI technique, this equation has to be

time-differentiated until an explicit dependency on the TVC input appears. The first-order derivative
corresponds to Eq. (13), which can be recast as:

y=q=f(x)+g(x)u (32)

where f(x) is the control-independent part of the model, g(x) expresses the influence of the controls
in the system and u is the control input. For the launcher scenario, the latter two terms correspond to:

g(x) ~ —fic, u=f (33)

A virtual control input can now be defined in order to transform the nonlinear system into a linear
form as follows:

. 0 1
v=g=0 = ﬂ:— (34)
v(s) 2
Following the procedure of Sec. 2.2, the command signal sent to the TVC actuator is given by:

8=t (v =) (35)

where 3y and ¢, are measurements/estimates of the TVC command and angular acceleration at the
current computation step, respectively. The estimate of the TVC command [, is obtained with a
low pass filter and because angular acceleration sensors are not common in launchers today, ¢q is
estimated by passing the angular rate ¢ through a derivative filter of the form:

S wq

Hils) = o (36)

where w; represents the filter bandwidth. Note that, after the feedback linearisation of Eq. (35), there
are still some degrees of internal dynamics in the system related to the drift motion and TWD effect,
but these dynamics are known to be stable and can be further handled by outer control loops.

Using the virtual control and the linearised system of Eq. (34), an outer PD control law is able to
enforce the desired closed-loop response as follows:

Q(S) . ]{Zp
Gcmd(s) N s2 + ]CD S+ ]Cp

v(s) = kp (Hcmd(s) - e<s)) —kpqls) = (37)
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kp = wj, kp = 2Cwy (38)

Note that, in contrast with the PD controller of Sec. 4.1, kp and kp do not need to be scheduled as
they depend on wy and ¢ only, but a pre-computed grid of y.[i] is still required to perform the feedback
linearisation. This is highlighted in the blue area of Fig. 3, which illustrates the implementation of the
INDI controller in the simulator. Alternatively, y. could be estimated based on online measurements.

()
th_emd
N Kp_INDI
m Kd_INDI Feedback linearisation
b4

Virtual control
( f) (nu)
q

| Y %
7w >

tve_cmd

adetest Low-pass -
P — filter
meas

o™=

= 1D T(u) -

- 12:34 L

aoa z

» Clock n
= Control effectiveness Unit delay

Qa
(mu_c)

Figure 3: INDI controller implementation diagram

4.3 Scheduled PD controller with ¢ feedback

As explained in Sec. 2.2, the INDI controller of Eq. (35) relies on ¢ information to reduce the impact
of the launcher’s model on the achievable control performance. For a fair comparison of controllers,
it is then pertinent to consider a linear controller where ¢ feedback is also employed. In this case, the
control law takes the form:

B(s) = ki (Gemals) = 6(5)) = ko a(s) — kad(5) (39)

where £, is the acceleration feedback gain. Similar to Sec. 4.1, the three gains can be tuned via pole
placement of the closed-loop transfer function, which is obtained by substituting Eq. (39) in (27):

Q(S) kP He
=— 40
Ocma(s) 1 — pcka §2 & lauva - ,LbckDS _ Ha + pckp (40)
11— ,uCkA 11— ,LLC/{IA

In contrast with the pure PD controller, the ¢ feedback allows to minimise tracking errors because
the desired steady-state gain GGy be specified independently of wy through the proportional gain as

follows: ]
Mo [2] Go
preli] 1 — Go’

which is scheduled along a grid of N = 9 points along the launcher’s trajectory. The other two gains
are then derived as a function of wy and ( as:

kpli] = =1,.,N (41)

DL mell e plikely L)
bl = = (1 B ) hli) = s (97— 2 (1= pelifhall) ) 42)

For the estimation of ¢ in Eq. (39), the same approach of Sec. 4.2, i.e. passing the angular rate ¢
through the first-order derivative filter of Eq. (36), was followed. In practice, it was verified that the
performance of this controller is fairly sensitive to the filter bandwidth w,. This impact is illustrated
in Fig. 4, which shows root-mean-square (RMS) values of pitch error (0cr = Ocrna — 6) vs. TVC rate
() for a step command in ,.,,q4 using different controllers and nominal conditions.

ESA GNC 2023 — P. Simplicio, P. Acquatella, S. Bennani 10



0.73

Sched. PD w/ Aot FB and varying Wy
dot
0.72 1 ——— INDI w/ low-pass filter and varying wy
. O Selected design points
0.7
Z
[0}
s 07
o
S
£ 0.69
@)
<=
2
o 0.68 1
0.67

0.66 ' ' ' ' ' : ' :
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
TVC rate RMS (deg/s)

Figure 4: Tuning trade-off of angular acceleration feedback approaches

The blue line in Fig. 4 shows results using the scheduled PD controller with ¢ feedback (FB) and
varying values of the derivative filter bandwidth w;. Based on the results, the selection of w, provides
a key (and intuitive) tuning trade-off: increasing the bandwidth leads to smaller errors at the expense
of more demanding TVC actuation, and vice-versa. A more favourable trade-off would likely be
achieved by using a higher-order derivative filter, which is outside the scope of this paper.

4.4 1INDI controller with low-pass filter

When applied to the pure INDI controller developed in Sec. 4.2, the same tuning trade-off analysis
showed a much smaller sensitivity to w, but unacceptably high TVC rates. To address this issue, the
INDI controller was augmented with a low-pass filter at the output of the feedback linearisation loop,
as depicted on the right-hand side of Fig. 3.

The feedback linearisation loop, outer linear gains and ¢ estimation filter remain unchanged. The
low-pass filter has bandwidth wg and a first-order structure as follows:

__ws
S+ wg

Hp(s) 43)

The purple line in Fig. 4 shows the tuning trade-off using the INDI controller with low-pass filter
and varying values of its bandwidth wg. Comparing with the PD controller with ¢ feedback (blue
line), the two controllers show a similar trend (i.e. smaller errors and larger TVC rates for higher
bandwidths), yet the INDI controller leads to smaller TVC rates for the same level of error. As
before, a more favourable trade-off would likely be achieved by using a higher-order low-pass filter,
but this is outside the scope of the paper.

4.5 Control design summary

The four controllers in Sec. 4.1 to 4.4 have been designed so as to enforce the same closed-loop
properties throughout the flight. These are:

* Natural frequency wy = 2.5 rad/s;
* Damping ratio ¢ = 0.8;

* Steady-state error of 5%, i.e. Gy = 1.05, only applicable to Sec. 4.3.
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Furthermore, the bandwidth of the filters in Sec. 4.3 and 4.4, w; and wg, has been tuned so as to
provide the same pitch error in nominal conditions, as highlighted in Fig. 4. The robust performance
of these controllers will then be analysed in Sec. 5.

Table 2 provides an overview of each controller’s dependency on the model parameters and sensor
measurements/estimates. As anticipated, from the scheduled PD controller to the INDI controller,
there is a progressive reduction of model dependency and increased use of sensor information. More
specifically, the INDI controller relies on measurements/estimates of ¢ and (3 to fully circumvent the
knowledge of the aerodynamics model.

Table 2: Dependencies per control design method

Control design Dependency on Dependency on

method model parameters measurements/estimates
Scheduled PD e, T, Cn,, Loy p, V| 0, q

Scheduled PD with ¢ feedback Jle, T, Cnyy lay p, V10, q, q

INDI with or without low-pass filter | J, l., T’ 0,q,q,0

5 TIME-DOMAIN ROBUST PERFORMANCE ANALYSIS

This section analyses and compares the nonlinear time-domain performance the controllers developed
in Sec. 4. Figure 5 shows dispersed responses of the 28 = 256 corner-cases within the uncertainty
level of Table 1 when subjected to the same wind turbulence input vy,, modelled as described in Sec. 3.
From the top to the bottom rows, the figure depicts the obtained pitch error 6.,,, TVC deflection 5 and
aerodynamic load indicator Qo along the trajectory. From left to right, the figure depicts results using
the scheduled PD controller (Fig. 5a, in black), scheduled PD controller with ¢ feedback (Fig. 5b, in
blue) and INDI controller with low-pass filter (Fig. Sc, in purple). The pure INDI controller (wihout
low-pass filter) is not shown as it leads to unacceptably high TVC rates.

From Fig. 5a to 5b, a reduction in the dispersion of all the indicators can be observed. This joint
reduction clearly demonstrates the benefit of including ¢ feedback in the control design. The pitch
error (and partially the QQ«) is further reduced when using the INDI controller with low-pass filter, as
depicted in Fig. 5c, at the expensive of higher TVC deflections (although still comparable to the pure
PD controller). Note that ()a minimisation was not a specific control design objective in this case,
but comes as a direct consequence of smaller pitch and drift errors, as indicated in Eq. (17).

In order to more clearly visualise these trends, Fig. 6a shows the wind response results using the same
RMS 6., vs. 8 plot of Fig. 4. Each point in Fig. 6a corresponds to a single simulation from Fig. 5.
As anticipated, the pure PD controller (in black) provides the largest errors but the smallest TVC
rates while, on the other hand, the pure INDI controller (in red) provides the smallest errors but the
largest TVC rates. The PD controller with ¢ feedback (in blue) and the INDI controller with low-pass
filter (in purple) lie in-between the two extremes, with the latter controller performing better than the
former (i.e. with slightly smaller errors and TVC rates) but only marginally.

In order to complement the analysis, Fig. 6b shows the same type of results for a step command in
O.ma- As before, the pure PD controller (in black) leads by far to the largest errors and the pure INDI
controller (in red) to the largest TVC rates. Performance in terms of error and TVC rate improves
using either the PD controller with ¢ feedback or the INDI controller with low-pass filter, and the
difference between these two controllers is now more evident than for the wind responses.

In nominal conditions, it was known from Fig. 4 that, for the same error, the INDI controller with
low-pass filter (in purple) provides a smaller TVC rate than the PD controller with ¢ feedback (in
blue). Nonetheless, Fig. 6a shows that the former controller performs better also in terms of error,
having a range of dispersion that is approximately four times smaller. The smaller error dispersion of
the INDI controller with low-pass filter comes at the expense of a larger TVC rate dispersion, but its
maximum value remains significantly lower than that of the PD controller with ¢ feedback.
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INDI-based controllers, by relying on angular acceleration and control input measurements/estimates,
are known to be more sensitive to sensor noise and actuator delays than classical linear controllers.
In order to assess this sensitivity, Fig. 7 extends Fig. 6a using the INDI controller with low-pass filter,
showing wind simulation results with different combinations of:

* Gaussian noise on the angular rate signal, with 30 = {0,0.05,0.1} deg/s, which affects the
estimates of both ¢ and ¢ through Eq. (36);

* Time delay of {0, 40, 80} ms on the signal commanded to the TVC actuator, corresponding to
a delay of {0, 1, 2} control samples.

10°

[

o]
o ?3 ‘
No noise, 40 ms delay
No noise, 80 ms delay
Noise 30=0.05 deg/s, no delay
Noise 30=0.05 deg/s, 40 ms delay
Noise 35=0.05 deg/s, 80 ms delay
Noise 35=0.1 deg/s, no delay

Noise 35=0.1 deg/s, 40 ms delay
Noise 35=0.1 deg/s, 80 ms delay

-
o
N

Pitch error RMS (deg)
)

00000

oo

107 : :
0 5 10 15 20

TVC rate RMS (deg/s)

Figure 7: Impact of sensor noise and actuator delays on INDI controller (w/ low-pass filter)

From Fig. 7, it can be observed that, for the ranges considered, delays on the TVC signal have very
little impact on the controller’s performance. Noise on the angular rate signal, on the other hand, leads
to a more noticeable degradation, with the resulting TVC rates increasing approximately linearly with
the noise variance. This type of understanding is therefore critical when designing and sizing INDI-
based GNC software and hardware. The impact of angular rate noise would likely be minimised by
using a higher-order derivative filter H,(s) or by including an angular acceleration sensor in the GNC
system.

6 FREQUENCY-DOMAIN ROBUST STABILITY ANALYSIS

Because of the nonlinear nature of INDI, attaining an analytical proof of stability of INDI-based
controllers [30] is much less trivial than for classical linear controllers. In order to mitigate this
shortcoming, this section introduces a simple yet insightful frequency-domain approach to quantify
stability degradation related to an imperfect feedback linearisation and to deviations from the control
tuning conditions. This section is therefore focused on the controller developed in Sec. 4.4, not on a
full comparison of controllers.

The proposed approach is based on linearised models of the nonlinear launcher simulator with the
INDI control law in the loop at different flight conditions and on the fact that, for a perfect feedback
linearisation, the channel v(s) — 6(s) behaves as a double integrator (recall Eq. (34)). The INDI
controller design was carried out under this assumption.

Linearised models of v(s) — 6(s) can be obtained thanks to MATLAB® routine:

linearize (mdl, findop (mdl, ¢), ...)

ESA GNC 2023 — P. Simplicio, P. Acquatella, S. Bennani 14



where md1 is the Simulink® file instantiated with a certain configuration and ¢ is the flight time
instant. The analysis in this section considers the 2° = 256 corner-cases (within the uncertainty level
of Table 1) and 33 instants (spaced every 2.5 seconds along the trajectory).

Figure 8a shows the frequency response of the aforementioned linearised models (in blue), together
with the “perfect” double integrator assumption (in red). This figure shows two important features:

* A mismatch between the linearised models and the double integrator assumption, which grows
with the frequency and arises from the fact that drift motion, TWD effects, actuator dynamics
and H,(s) filter were neglected in the feedback linearisation;

* A dispersion of the linearised models, which is caused by deviations from the control tuning
conditions due to the uncertain and time-varying nature of the model’s parameters.

These models can be employed to assess the system’s stability margins when the loop is closed using
Eq. (37). To do so, it is convenient to plot the responses in a Nichols chart, which is depicted in Fig. 8b.
For a detailed explanation of the application of Nichols charts to launcher stability assessment, the
reader is referred to [33].
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o 0 Double integrator assumption
° 50 1 Corner-case samples ]
()
S -100 401 _
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Figure 8: Frequency responses of linearised INDI-controlled plants for stability analysis

The impact of the imperfect feedback linearisation on the system’s stability becomes evident from
Fig. 8b: the phase margin is reduced approximately by half and the system can be gain-destabilised,
which is not the case under the double integrator assumption. Nonetheless, all phase and gain margins
remain substantial. When this is not the case, the linearised models of v(s) — 6(s) can be employed
instead of Eq. (34) to re-tune the INDI outer control law. The stability margins are naturally driven by
the value of ., which is the main dependency of the INDI controller (recall Table 2). Accordingly,
the margins become smaller for smaller values of . as the system’s control effectiveness decreases,
and vice-versa.

In order to assess the degradation caused by uncertainties and time variations, the phase and gain
margins are plotted as a function of time in Fig. 9a and b, respectively. These figures show the
nominal margins (in continuous line), the worst (minimum) corner-case margins with the uncertainty
level of Table 1 (A = 100%, in dash-dotted line) and the worst corner-case margins with twice the
uncertainty level (A = 200%, in dotted line). The N = 9 control tuning points, i.e. the interpolation
nodes of ., are indicated in the figures using circular marks. The main results are then summarised
in Table 3.

From Fig. 9, it can be seen that, at the control tuning points, nominal phase and gain margins are
constant throughout the flight. This is expected because the closed-loop of Eq. (37) is time-invariant.
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Figure 9: Nominal and worst-case margins of INDI controller (w/ low-pass filter)

Table 3: Stability margin budget (A = 100%)

Case Phase margin | Gain margin
Double integrator assumption 69.84 deg 00
Nominal case 31.37 deg 20.55dB
Nominal case w/ deviation from p. interpolation points 30.38 deg 20.41 dB
Worst corner-case 23.04 deg 19.30dB
Worst corner-case w/ deviation from g interpolation points 22.03 deg 19.07 dB

Between tuning points there is naturally a variation in margins due to mismatches between actual and
interpolated values of y.. Nonetheless, this variation is extremely limited and leads to a degradation
of only 1 deg and 0.14 dB.

Stability degradation due to uncertainties is about one order of magnitude higher, leading to margin
losses of 8.3 deg and 1.3 dB. In practice, the resulting stability margins must provide enough room to
accommodate the impact of dynamical effects that were not considered in this study, such as flexible
modes and non-collocated sensing. Nonetheless, the worst-case margins are plentiful, which suggests
the feasibility of INDI-based launcher attitude control. In fact, the worst-case values remain accept-
able even when the assumed level of uncertainty is doubled (A = 200%, shown only in Fig. 9, not in
Table 3 for the sake of conciseness).

7 CONCLUSIONS

In conclusion, this paper presented a feasibility study of Incremental Nonlinear Dynamic Inversion
(INDI) applied to a launcher ascent flight control scenario and highlighted its potential benefits over
the traditional ad hoc linear control approach widely studied and implemented in practice. The pa-
per introduced the INDI technique which mainly cancels the nonlinearities of a (nonlinear) system by
means of state/output feedback and transforms it into a linear form, making it suitable to be controlled
by a single linear control law without the need for gain-scheduling or other nonlinear approach (slid-
ing mode, etc.). The paper also discussed the challenges associated with INDI-based control, such
as sensitivity to sensor noise and actuator delay, and the difficulty of obtaining an analytical proof of
stability. However, the potential benefits of INDI-based control outweighed these challenges as it was
shown in a comprehensive nonlinear simulation campaign which considered wind disturbances and
parameter uncertainties.
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Finally, the paper proposed a simple, yet insightful linearisation-based approach to evaluate stability
degradation and deviations from the (nominal) control tuning conditions. The results obtained in this
study suggest that the INDI-based control approach could bring relevant improvements to launcher
GNC, which may facilitate the transition to data-driven methods in the future. Outlook of this work
will be furthering the analysis in terms of limits of performance (worst-case analysis) as well as
addressing the impact of flexible modes and non-collocated sensing.
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