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Abstract

This work investigates the potentialities of multispectral imaging data fusion for relative navigation, map-
ping and dynamical characterization of an unknown celestial body. A vision-based navigation algorithm
is designed to work on both visible (VIS) and thermal infrared (TIR) images, with the aim of estimating
the spacecraft’s relative pose while reconstructing the target’s shape. The output of the Image Pro-
cessing (IP) is then considered as the primary measurement source for an Extended Kalman Filter
(EKF), that fuses camera output with inertial measurements to refine the pose estimate and reconstruct
the asteroid’s spin state. Experimental results suggest that the proposed data fusion approach can ef-
fectively enhance the navigation solution accuracy without requiring any additional on-board hardware
complexity.

Keywords: Asteroids missions, Relative navigation, Multispectral image processing, Spin state
characterization, Simultaneous Localization And Mapping

1. Introduction

Small celestial bodies represent some of the principal targets of exploration missions in the last
decades. The subset of Near Earth Objects (NEO) family, which are candidates for Earth impacting,
currently constitute the main target of on-going activities and research for planetary defense [1]. Mis-
sions towards small celestial bodies have to deal with a harsh and partially unknown environment,
together with operational challenges such as telecommunication delays. The probe is typically asked to
orbit close to a small object, unknown in shape and dynamics, to progressively characterize it in terms of
geophysical and dynamical properties. To this aim, different technologies are embarked, among which
multispectral imaging sensors play a fundamental role to support both body shape and thermophysi-
cal properties reconstruction. Images collected by the visible (VIS) camera are processed on ground
using stereophotoinclinometry and stereophotogrammetry techniques to reconstruct the object’s shape
[2] ,[3], while thermal infrared (TIR) images provide information regarding the thermophysical properties
[4], useful to reconstruct an hazard map. The combination of this information can be exploited to select
a safe landing site for the probe, leveraging knowledge about the body’s topology and composition.
Besides scientific investigation, imaging data are also a powerful tool for relative Guidance, Navigation
and Control (GNC) purposes. Visible on-board cameras are nowadays employed for centroiding tech-
niques during approach and early characterization phases, while a landmark-based navigation solution
is employed during proximity operations, as recently demonstrated by NASA’s OSIRISREx [5]. Despite
the widespread use of thermal imaging for scientific applications, GNC operations are still entrusted to
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optical imaging only. The first attempt of introducing thermal imaging for navigation purposes is rep-
resented by the Hayabusa-2 mission. The onboard Thermal Infrared Imager (TIR) contributed to the
mission success allowing to detect the deployable artifical markers against the sun-lit asteroid face,
which made it possible to perform an autonomous landing operation [6]. Considering these capabilities,
thermal imaging can be regarded as a potentially useful and applicable tool to support GNC tasks, as
hypothesized in [7]. Multispectral data fusion increases the reliability of the navigation scheme in case of
shadows and high Sun phase angle, while the combination of shape and temperature information allows
a deeper and faster understanding of the asteroid’s composition and inertia reconstruction towards its
spin history identification. This work seeks to investigate the potential benefits of including the already
onboard thermal imager in the navigation chain. A stand-alone vision-based navigation and mapping
algorithm relying on a mono-camera as the main sensor has been developed to work on both the visible
and the thermal infrared spectrum. Synthetic images have been generated on purpose to benchmark
the algorithm’s performances, proposing a simple domain translation methodology to obtain thermal
infrared images without the need of a dedicated rendering software. A navigation filter for relative pose
estimation and spin state characterization has been developed to work in combination with the Image
Processing (IP) output. Performance assessment of the two main components of the navigation chain
is then presented, highlighting the benefits of multispectral data fusion in terms of navigation solution
accuracy.

This paper is organized as follows: in Section 2 synthetic images rendering is addressed; in Section 3
the Vision Based navigation algorithm is presented and its performances are critically analyzed. In Sec-
tion 4 the relative navigation filter is described and performances of an extensive Montecarlo simulation
are reported. To conclude, the key findings are summarized and discussed in Section 5, together with
some hints for future studies.

2. Synthetic TIR images rendering

Visible images are obtained using PANGU [8]. Concerning thermal infrared images, since dedicated
rendering tools are still under development, a simple domain translation methodology is here proposed.
The starting point for the generation of synthetic TIR frames is represented by the available rendering
software and the asteroid’s thermal model. Two different thermal models are compared to identify the
application range of the proposed domain translation methodology. The models are here listed with
increasing complexity.

Simplified thermal model. The simplest thermal model stems from the idea that the thermal emission
from any point on an asteroid’s surface can be considered to be in instantaneous equilibrium with the
solar radiation absorbed at that point, as proposed in [9]. The equilibrium condition is formalized as:

Qin = Qout (1)

In which Qin is the heating solar flux, while Qout the thermal emission from the asteroid. The solar flux
is a function depending on the distance with respect to the Sun and on the incidence angle φ between
the direction of the Sun and the normal vector to the heated surface:

Qin = S �(1 − A)
(AU

r

)2

cos(φ) (2)

where S � is the solar constant and A is the bolometric Bond albedo. The flux emitted by the asteroid at
the thermal equilibrium is written as:

Qout = εσu4 (3)

in which ε is the emissivity of the surface of the asteroid, u is the temperature of the asteroid and σ is
the Stefan-Boltzman constant. Within this context, the equilibrium temperature of the body is expressed
as:

u =

(S �(1 − A)
εσ

(AU
r

)2

cos(φ)
)1/4

= u0 cos(φ)1/4 (4)

In which the subsolar temperature u0 is obtained for φ = 0. The temperature distribution over the body is
then only described through the solar incidence angle. The temperature on the nightside of the asteroid
φ ≥ 90° is assumed to be zero, which is a reasonable assumption at small Sun Phase Angles (SPA)
where the dayside flux dominates. However, since a thermal camera is especially useful to provide
information for high SPA, it is essential to introduce a more complex model.
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Complete thermal model. A more realistic thermal model should take into account that the asteroid’s
dark side is progressively cooling down and that a certain amount of the Sun heat flux is stored in the
ground layers. To model these phenomena, it is necessary to introduce a temporal dependency for the
temperature profile, in such way that also the spin state can be accounted for. Furthermore, thermal
conduction must be considered at least in the radial direction, to include the contribution of different
ground layers. The basic equation underlying this thermal model is the following:

Qin = Qout + Qs (5)

In which Qs represents the heat flux at the surface of the asteroid. This heat flux at the surface of the
asteroid is linked to the 1D temperature gradient:

Qs = −k
∂u
∂x

∣∣∣∣∣
x=0

(6)

Where k is the conductivity of the asteroid, and the x coordinate is taken in the radial direction, posi-
tive downwards. To model the heat transfer in the ground, it is necessary to use the heat conduction
equation, in which a constant conductivity is assumed for simplicity:

ρcp
∂u(t, x)
∂t

= k
∂u(t, x)
∂x2 (7)

Where ρ is the density and cp the specific heat capacity. More parameters are necessary to describe
the properties of asteroid, namely the thermal inertia Γ and the annual thermal skin depth ls:

Γ =

√
kρcp ls =

√
απp (8)

Where p is the orbital period of the asteroid and the diffusivity α defines the material property. The
thermal inertia quantifies the ability of the material to keep its actual temperature. The higher the
thermal inertia is, the smoother the temperature variation will be. The skin depth is regarded as the
depth of the ground where an adiabatic assumption can be acceptable, which means a null heat flux.
Finally, boundary conditions are set to complete the model of Eq. (7)

u(0, x) = f (x) ∀ x ∈ [0,ls]
ux(0, t) =

Qout−Qin
k ∀ t ≥ 0

ux(ls, t) = 0 ∀ t ≥ 0
(9)

Where ux denotes the partial derivative of temperature with respect to the spatial coordinate x. Details
regarding the model validation and discussion are available in [10] and [11], while only some key results
are here reported.

Within this framework, due to its relevance to the upcoming HERA project [12], Didymos has been
selected as the target of our simulations. Since no detailed thermophysical characterization of Didymos
and its moon Dimorphos is available, the material properties were chosen considering ESA’s reference
model [13], while the thermal inertia was set to an intermediate value of Γ = 500 Jm−2K−1s−0.5, building
on past missions collected data. In this simplified simulation the obliquity δ was neglected, and since
Didymos’ orbit about the Sun is only inclined of 3° about the ecliptic, the asteroid’s inclination has been
neglected as well. Notice that a constant angular velocity about the asteroid’s z−axis has been assumed.
Even though the real spin state is more complex, the model can be still considered as representative
of the thermal behaviour. The temperature distribution is then evaluated ad a distance of 1.6 AU, using
both models. Results are reported in Fig. 1. The temperature range of the sunlit face of the asteroid is
similar in the two cases, with only a small difference of about 25 K. As expected, the complete thermal
model reported in Fig. 1b can correctly describe the temperature gradient between the dayside and
the nightside of the asteroid. Since Didymain’s rotation period about its spin axis is only 2.26 hrs, the
temperature distribution is smooth, as the dark side cannot cool down significantly.
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Figure 1: Thermal model comparison

(a) Simple model (b) Complete model

TIR images generation. From the comparison of the thermal models, it can be concluded that the
simple thermal model can still provide a truthful temperature description for small SPA. If the simplified
thermal model holds true, considering uniform physical properties, the temperature only depends on
local Sun incidence angle. This information is not directly available from imaging data, yet it can be
empirically related to the observed punctual brightness. Considering Eq. (4), the information related to
the Sun incidence angle is replaced by the single pixel brightness. The results still match the overall
minimum and maximum temperature expected at the asteroid’s surface, while further improvements
need to be introduced to generate a meaningful temperature spatial distribution. A further step towards
a more realistic rendering is represented by the generation of a synthetic emissivity map, whose aim is
to simulate an heterogeneous material distribution that reacts differently when illuminated. It can be then
concluded that the proposed methodology is only applicable for low SPA and for simple shapes, where
self-shadowing is not present. Nevertheless, this approach is still useful for a preliminary performance
assessment of IP algorithms. An example of two frames in the different sensing modalities is presented
in Fig. 2, considering a spheroidal shape for Didymos rendering. Selected camera parameters are
reported in Table 1.

Table 1: VIS and TIR camera parameters

FOV [deg] Sensor Size [px2]

VIS cam 11 × 11 1024 × 1024
TIR cam 11 × 11 512 × 512
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Figure 2: Synthetic VIS (left) and TIR (right) images

(a) Synthetic visible image (b) Synthetic thermal infrared image

3. Image processing algorithm

The implemented vision-based navigation algorithm relies on the incoming images and does not
require any previous knowledge regarding the target’s geometry. Hereafter, all the main building blocks
are described together with details regarding the implementation choices. Results of a preliminary
testing campaing are also reported, highlighting the differences between the two available sensing
modalities.

3.1. Algorithm description
The developed vision-based navigation algorithm builds on concepts of Visual Odometry (VO) and

Visual-SLAM (V-SLAM). The pipeline is capable of working in both the visible and the thermal infrared
spectrum. Features are extracted and tracked from the incoming image stream, while at the same time
a sparse 3D map of the asteroid is reconstructed and used for navigation. The relative position and
attitude of the probe are optimized using Bundle Adjustment (BA) [14], that is a widely used technique
in the computer vision field. A schematic outline of the algorithm is presented in Fig. 3, while a brief
summary is here presented.

Figure 3: V-SLAM algorithm

Feature detection. A feature or keypoint is defined as a point of interest in an image, usually in the form
of corners, blobs and lines. Among all the different feature extraction approaches, Oriented FAST and
Rotated BRIEF (ORB) [15] is exploited for VIS images, while Speeded-up Robust Features (SURF) [16]
is employed for TIR images. To further improve the spatial keypoint distribution over the image, adaptive
non-maximal suppression (ANMS) with suppression via square covering (SSC) is employed [17], that is
able to enforce a better spatial distribution by jointly taking into account the keypoints strength and their
localization. An upper bound of 400 features is set to constrain the computational burden.
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Feature tracking. Features are extracted from the first frame and are then tracked on the subsequent
images using the pyramidal Lucas-Kanade algorithm [18]. After the tracking process, a keypoint culling
procedure is implemented to discard features that have been erroneously tracked or the ones tracked
with low accuracy. The number of tracked features tends to decrease as the trajectory develops, there-
fore new keypoints must be initialized. New features are merged with the old ones that are still being
tracked at the time of re-detection, provided that they are sufficiently distant.

Motion Estimation. In the main V-SLAM module, motion estimation relies on correspondences between
2D tracked features and 3D map points. For this reason, the map must be built and initialized to boot-
strap the algorithm. In the initialization module, keypoints detected in the first frame are tracked from
the first frame through all intermediate frames up to the actual second initialization frame. The essential
matrix is estimated through the 5-point algorithm [19], that is nested within an MSAC [20] routine for
robustness purposes. The essential matrix is then decomposed using Singular Value Decomposition
(SVD), obtaining a rotation matrix and a translation vector (up to scale). Landmarks can be now triangu-
lated using the relative pose information. Once the 3D sparse map is initialized and the 2D features are
tracked, for each incoming image a set of 3D to 2D map to features correspondences is retrieved and
used to solve the Perspective-n-Point problem (PnP). P3P [21] and EPnP [22] algorithms are exploited
to this aim. The P3P algorithm is combined with MSAC in order to remove outliers from the initial set of
correspondences. The resulting set of Map-To-Frame correspondences is then fed to the EPnP solver,
that is a non-iterative solution of the problem and is applicable both for planar and non planar map point
configurations. The last step is represented by a Gauss-Newton iterative optimization, which further
refines the EPnP pose estimate.

Mapping. When the map is first initialized, badly triangulated landmarks must be pruned to preserve
localization performances. Landmarks must have a positive z coordinate in the current camera frame,
which means that they are actually in front of the camera and visible. Furthermore, an upper limit on
the distance from the camera is imposed, since far away points tend to have a higher uncertainty. This
limitation is practically implemented by imposing a threshold on the ratio between the maximum z co-
ordinate and the median of the depth of the landmarks. Each time new keypoints are initialized, an
attempt of triangulation is made, using the previously stored pose information. To make sure that the
newly added landmarks respect some quality standards, the angle between the between the bearing
vectors corresponding to the keypoints observations and camera poses must be greater than a prede-
fined value. In addition, the reprojection error of the candidate landmarks must not exceed a defined
error threshold. In this way wrong feature tracks resulting in skew bearing vectors are removed.

Optimization. Motion estimation is an error prone step and it does not have sufficient accuracy in trajec-
tory reconstruction by itself. Besides, motion is reconstructed in an incremental way, which means that
error tends to build up and exponentially grow as the trajectory develops. This results in an increasing
drift in time which is classical of any VO or V-SLAM problems. To prevent the motion estimation error
from accumulating, BA is implemented, exploiting the Sparse Bundle Adjustment (SBA) software pack-
age [23] available in MATLAB environment. To reduce the computational load of the algorithm, Motion
Only BA is performed, meaning that only the pose is optimized, keeping the 3D landmark coordinates
fixed.

3.2. Simulations and results
The synthetic images used as benchmark have been obtained using PANGU, adopting the previously

described domain translation methodology and camera parameters (Table 1). Considering a trade-off
between real hardware capabilities and image processing performances, it is assumed that a picture is
taken every 30 s approximately. This frame rate is used in combination with Didymos revolution period
to generate a realistic image sequence. Results are here presented for a long sequence of 300 frames,
which in turn translates into a complete revolution around the asteroid, considering the asteroid fixed
frame. A simple circular trajectory was selected, with a radius of approximately 5 km and an inclination
of 20°. An overview of the ground truth trajectory and the reconstructed one is reported in Fig. 4 for
both sensing modalities. Please notice that the motion is reconstructed up to scale, and that trajectory
alignment and scaling are performed in the post-processing phase.
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(a) Reconstructed trajectory, VIS mode (b) Reconstructed trajectory, TIR mode

Figure 4: Trajectory reconstruction

To evaluate the navigation algorithm performances, the overall position error is computed as:

eρ =

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (10)

where x̂,ŷ,ẑ are the position components estimates. The attitude error is computed following [24]:

eR = arccos
(
1 −

tr(I − AT Â)
2

)
(11)

with Â being the estimated rotation matrix. The results of the V-SLAM algorithm in terms of position and
attitude reconstruction are presented in Fig. 5, considering both sensing modalities.

Figure 5: Position (top) and attitude (bottom) error, test case n.1

It can be noticed that the VIS sensing mode performs well on a long sequence, keeping the overall
position error below 2.2 % of the range and the attitude one below 1.5°. Considering instead the TIR
sensing mode, it is evident that the reduced sensor size negatively affects the pose estimation, with an
overall position error that can reach up to 6.5 % of the range. The overall error reaches values that
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are too high for practical applications, and accuracy should be enhanced either by adding a further
optimization step (full BA) or by performing data fusion.
This long sequence is also useful to assess the shape reconstruction performances. The obtained
sparse 3D maps are reported in Fig. 6. Please notice that the scale is arbitrary at this stage, and thus
no units have been introduced. Mapping performances are indeed satisfactory in both cases, in fact the
overall shape of the asteroid is well-reconstruced. Nevertheless, it is worth underlining the fact that the
map reconstructed with the TIR sensing mode presents a slightly higher number of outlier points, and it
is less uniform, while the VIS map is extremely homogeneous in terms of spatial distribution, thanks to
ANMS-SSC feature point bucketing.

Figure 6: Asteroid shape reconstruction

(a) Shape reconstruction, VIS mode (b) Shape reconstruction, TIR mode

Once a 3D sparse map is available, a polyhedron model can be retrieved to further assess the
validity of the reconstructed shape. The resulting triangulation for the VIS sparse 3D map, that is the
best one, is presented in Fig. 7

Figure 7: Polyhedron shape model reconstruction
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4. Filtering

To combine information coming from the VIS and TIR camera, a filtering procedure is performed. In
this work, a coupled position-attitude filter is considered, that makes it possible to obtain observability
of the asteroid’s angular velocity.

4.1. Algorithm description
The Extended Kalman Filter is the most widespread filtering technique when dealing with nonlinear

system estimation. The idea behind this method is quite straightforward. The non-linear system is lin-
earized around the current state estimate, and the state update is performed using a small perturbation
discrete linear model. Considering a generic non-linear system:

Ẋ = f (X, t) + G(X)w
Y = h(X, t) + v (12)

f is a non-linear function, w is a zero-mean, Gaussian process noise with known covariance Q and G
is a noise mapping function. The system output is linked to the current state X by a non-linear function
h, while v is a zero-mean, Gaussian process noise with known standard deviation.
Once the full non-linear model has been obtained, it is necessary to derive the linearized model to
fully develop the EKF estimation algorithm. Defining δX as a small perturbation around the reference
condition (i.e the current state estimate), the linear perturbation model can be written as:

δẊ = F(X)δX + Gw
δY = H(X)δX + v (13)

where F(X) and H(X) are the Jacobian matrices of f (X) and h(X) respectively. The last step towards the
development of the EKF algorithm is the defition of the State-Transition-Matrix (STM), that is reported
in Eq. (14):

Φ(t, t0) =
∂ f (t)
∂ f (t0)

(14)

and it can be obtained integrating Eq. (15):

Φ(t, t0) =

∫ t

t0
Φ̇(τ, t0)dτ (15)

where Φ(t, t0) = F(t)Φ(t, t0)
Φ(t, t0) = I

(16)

The EKF routine is summarized in algorithm 1, in which Q is the process covariance matrix, while R is
the measurement covariance matrix. The only exception to the traditional EKF scheme is the posterior
covariance update, which is computed through the Joseph’s Formula for stability reasons [25]

Algorithm 1 Extended Kalman Filter

1: X̂−k =
∫ tk

tk−1
f (X(τ))dτ, X̂0 = X0, Xk−1 = X̂k−1

2: P−k = Φ(tk, tk−1)P+
k−1Φ

T (tk, tk−1) + GQGT ∆t
3: Kk = P−k HT

k (HkP−k HT
k + Rk)−1

4: X̂+
k = X̂−k + Kk(Yk − h(X̂−k ))

5: P+
k = (I −KkHk)P−k (I −KkHk)T + KkRKT

k

A quaternion-based representation is then selected to parametrize the attitude states. However, this
choice needs to be coupled with a dedicated filtering approach, in order to deal with the non-uniqueness
of this formulation. Even though it is possible to use an additive quaternion error, this representation
leads to ill-conditioning of the covariance matrix, and orthonormality of the attitude matrix is no longer
guaranteed. To overcome these issues, a multiplicative quaternion error is adopted, which is the basic
principle of the Multiplicative EKF (MEKF) [26]. The MEKF uses the quaternion as a global attitude
representation and use a three-component state vector δθ for the local representation of attitude errors.
The multiplicative approach also has the advantage of reducing the size of the state, and thus of the
covariance matrix. The full derivation of the error state model is available in [26], while only the non-
linear state model is here reported for brevity.
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4.1.1. Reference frames
Three reference frames are used for the development of the navigation filter: asteroid inertial, as-

teroid fixed and body fixed, that are labeled as I, A and B respectively. Asteroid inertial frame and
asteroid fixed frame share the same origin (the centre of mass of the small body), with the latter being
attached to the tumbling asteroid itself. The body fixed frame is instead attached to the spacecraft, and
it is assumed to be coincident with the camera reference frame.

4.1.2. Dynamical propagation
The main goal of the navigation system is to estimate the relative position, velocity and attitude with

respect to the asteroid frame. The asteroid’s angular rate, which is unknown, acts as a coupling term
for the relative translational and rotational dynamics, and thus it is included in the state vector. The
probe’s attitude kinematics with respect to the asteroid fixed frame is a function of both the asteroid’s
spin state and of the inertial angular velocity, which is measured by the gyroscope. Due to the fact that
the gyroscope is susceptible to a drifting error, it is a common practice to include the gyroscope bias in
the state vector, together with the inertial attitude state. The global state vector can be then defined as:

X =
[
rA vA qB/A qB/I β ωA/I

]T
(17)

Where (rA, vA)T are the position and velocity vectors expressed in the asteroid fixed frame, qB/A repre-
sents the spacecraft’s relative attitude with respect to the asteroid fixed frame, qB/I is the attitude with
respect to the inertial frame, β is the gyroscope bias expressed in the body frame and ωA/I is the as-
teroid’s spin state with respect to the inertial frame. The usual Kalman filter update equations can be
employed to include gyro data in the EKF as measurements. However, a great number of attitude filters
incorporate gyro information as part of the dynamics instead of using the gyro information as a Kalman
measurement update. This alternative is often referred to as dynamic model replacement mode. The
adopted approach does not require a model of rotational dynamics and torques, which in turns avoids
the modeling of the spacecraft’s inertia and control action. Considering the asteroid’s rotational dynam-
ics, a constant angular velocity has been assumed. The complete derivation of the non-linear model
is available in [27], while only the final expression is here reported for conciseness, considering the
notation of Eq. (12).

f (X) =



vA

−
µ

r3
A

rA − 2ωA/I × vA − ωA/I × (ωA/I × rA)

1
2

Ω
(
ω̃B/I − β − AB/AωA/I

)
qB/A

1
2

Ω
(
ω̃B/I − β

)
qB/I

0
0

(18)

Where AB/A is the attitude matrix A(qB/A) that links the body fixed frame to the asteroid fixed frame and
ω̃ is the measured angular rate. The expression Ω(v) reads:

Ω(ω) =


0 vz −vy vx

−vz 0 vx vy

vy −vx 0 vz

−vx −vy −vz 0

 (19)

being v a generic 3-component vector.
The noise mapping matrix G and the process noise vector w complete the non-linear propagation:

G(X) =


03×3 03×3 03×3 03×3
I3×3 03×3 03×3 03×3

04×3
1
2 Ξ(qB/A) 04×3 04×3

04×3
1
2 Ξ(qB/I) 04×3 04×3

03×3 03×3 03×3 I3×3

 w =


ηg
ηv
ηu
ηω

 (20)

In which Ξ(q) is defined as:

Ξ(q) =

[
q4I3 − [q1:3×]
−qT

1:3

]
(21)
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Considering the process noise components, ηg is an artificial white noise (ηg ∼ ν(0,σg)), whose aim is
to compensate for the errors in the gravity field model introduced by the keplerian motion simplification.
The noise vectors ηv and ηu are instead linked to the gyroscope characteristics. Lastly, an artificial white
noise ηω is added to the asteroid rotational dynamics to ease the estimation process.

4.1.3. Measurement model
To perform the EKF update, the filter must process information coming from the available sensors.

In spite of the fact that the VIS and TIR navigation cameras represent the most important source of
information, their contribution must be fused with inertial measurements reconstruct the whole state
vector. Besides gyroscope measurements, that have already been discussed, it is assumed that a star
tracker and an altimeter are available onboard.

Star Tracker. The star tracker provides information regarding the inertial attitude of the probe. For sim-
plicity, the instrument is supposed to have direct quaternion-out capabilities, therefore a noisy quaternion
is readily available:

Ystar = qstar = q̃B/I (22)

Altimeter. The ranging measurement provides the magnitude of the relative distance to the asteroid:

Y% = % = ||rA|| (23)

Camera. Considering the implemented V-SLAM pipeline, direct pose measurements are available:

Ycam =

[
rA

qB/A

]
(24)

The full measurement vector is thus:

Yk =
[
% qB/I rA qB/A

]T
(25)

Notice that in this case only range measurements require the actual computation of the Jacobian matrix
H%, while all the other quantities are linearly related to the state vector.

4.1.4. Measurement check
Due to the presence of outliers in the measurements, not all the data delivered by the IP should

actually be processed by the filter. It is then necessary to implement an outlier-rejection strategy nested
within the filtering scheme, to make it robust to IP faults and errors. To detect the presence of outliers
in the observations, that are theoretically Gaussian distributed, the so called null-hypothesis test is
performed, similarly to [28]. Since it is assumed that observations are Gaussian, with known mean
and standard deviation, in case there are some outliers, the normal probability density function does
not hold anymore. The aim of the null-hypothesis test is to check whether the actual measurement is
compatible with the assumed model, i.e null-hypothesis. As highlighted in [29], the judging index can
be set to the square of the Mahalanobis distance:

γk = M2
k = (Yk − h(X−k ))T (Pyk )

−1(Yk − h(X−k )) (26)

where
Pyk = HkP−k HT

k + Rk (27)

Assuming that the null-hypothesis is true, γk should be Chi-square distributed with degree of freedom
m. A significance level α, that is a probability threshold below which the null hypothesis will be rejected,
is selected. α is typically a small number, which is here set to α = 0.05. Please notice that the α-quantile
χα of the Chi-square distribution is predetermined for a given threshold α and number of degrees of
freedom m. It is then possible to write:

P(γk > χα) = α (28)

which implies that the probability of a randomly selected γk (still to be evaluated for the actual measure-
ment Yk) being greater than χα should be equal to α. The performance index γk is then evaluated for
the available measurement, and the test is performed. If it occurs that γk > χα the null hypothesis is
rejected, and it can be concluded that the current observation is actually an outlier.
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4.2. Simulation scenario
4.2.1. Reference dynamical model

In order to validate and assess the performance of the filter, a preliminary test campaign has been
performed separately with respect to the V-SLAM pipeline. An hyperbolic arc has been selected for the
probe, with eccentricity of 1.2 and pericenter radius of 5km. A duration of 5.5 hours is considered for the
simulation. The main attractor’s shape is roughly known from ground observation, and an high fidelity
model has been developed and used in several researches, according to the gravity field expression
from a polyhedral object [30], whose physical properties are taken from [13]. Concerning the rotational
dynamics of the asteroid, it has been assumed to be mainly rotating about its z−axis. A small deviation
is then introduced to reproduce the highly perturbed dynamics of such objects:

ωA/I =

cos(δλ)sin(δθ)
sin(δλ)sin(δθ)

cos(δθ)

ωz (29)

Where δθ is a generic perturbation, with δθ = 0 corresponding to the reference state. The rotational axis
draws a cone about the zA axis, experiencing precession. In this work δθ = δλ=3° is considered.
For the probe’s rotational dynamics, a nadir-pointing attitude guidance is imposed, in such way that the
camera’s boresight, that coincides with the z−axis of the body fixed frame, always points towards the
asteroid’s center of mass. To satisfy the pointing constraint, the spacecraft must rotate around its y-axis,
that is aligned with the orbital angular momentum, at a rate given by:

ωB/I =
[
0 h/%2 0

]T
(30)

Where h is the orbital angular momentum and % is the distance from the primary body.

4.2.2. Hardware model
The gyroscope is usually sampled at a high rate, therefore a discrete model is sufficient for this

simulations’ purposes. Artificial noise is introduced in terms of a random constant and a random walk.
The discrete time model provided by Markley and Crassidis [26] is here adopted.

ω̃k+1 = ωk +
1
2

(βk+1 + βk) +

(
σ2

v

∆t
+

1
12
σ2

u∆t
)1/2

ηv (31)

βk+1 = βk + σu∆t1/2ηu (32)

where the subscript k denotes the k− th time step, while ηv and ηu are zero-mean Gaussian white-noise
processes with known variance σv and σu. The gyroscope considered in this work is the AIRBUS-
Astrix 120 [31]. The star tracker output q̃B/I is obtained perturbing the nominal quaternion with a small
measurement noise quaternion δqn.

q̃B/I = δq−1
n qB/I (33)

Typical accuracy values and update rate have been taken from the datasheet of AA-STR tracker by
Leonardo [32], on-board the ongoing ESA mission Bepi-Colombo. It is worth underlying that a higher
error is attributed to the measurements along the instrument’s boresight axis, which in this case is
aligned with the Y-axis of the body-fixed frame.
Considering now the navigation cameras output, measurements have been generated artificially, con-
sidering the performances highlighted in section 3. Position measurements were obtained corrupting
the ground-truth trajectory with white Gaussian noise, while attitude measurements were computed
through noisy quaternions, as previously done in Eq. (33) for the star tracker output. Outliers have
been added to the measurements for realism purposes. For consistency, the camera update rate is the
same as the one considered during the IP tests, while the other sensors update rates comply with real
hardware capabilities and they are reported in Table 2. The propagation time step of the filter is set to
1s.

Table 2: Hardware sampling time

Star Tracker Altimeter Gyroscope Camera

Update rate [s] 1.00 1.00 1.00 30
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4.3. Results
In this section, the results of the state determination are presented. A Montecarlo simulation of 250

runs is performed, considering the same set of measurements and uncertain initial conditions. The filter
settings are reported in Table 3 and Table 4. Each submatrix of the covariance matrix is assumed to be
isotropic. The initial state estimate is obtained by randomly sampling within the 3σ bounds of the initial
covariance matrix.

Table 3: Process noise settings

Parameter Value Unit

σg 5.00e-07 km/s2

σv 2.74e-07 rad/s1/2

σu 2.24e-08 rad/s3/2

σω 8.00e-09 rad/s

Table 4: Initial covariance settings

Parameter Value Unit

P0, rA [3e − 02]2 km2

P0, vA [3e − 03]2 km2/s2

P0, qB/A [3e − 03]2 -
P0, qB/I [3e − 05]2 -
P0, β [1e − 06]2 rad2/s2

P0, ωA/I [1e − 06]2 rad2/s2

Position and attitude errors are computed as in Eq. (10) and Eq. (11) respectively, while the angular
velocity estimation error reads:

eω =

√
(ωx,i − ω̂x,i)2 + (ωy,i − ω̂y,i)2 + (ωz,i − ω̂z,i)2 (34)

Position, relative attitude and spin state estimation error is shown in Fig. 8, considering all three sensing
modalities.

Figure 8: Position (top), relative attitude (middle) and asteroid’s spin (bottom) estimation error

Although TIR images offer reduced performances with respect to VIS data, the adopted approach
highlights that the VIS-TIR measurements fusion leads to improvements in the order of 25%, 22% and
11% in localization, attitude and spin state estimation respectively, compared to VIS camera exploitation
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only. It is also worth noticing the fact that spin state estimation improvement linked to data fusion is not
as evident as in the case of the relative pose, since it is only recovered through the state dynamical
model and not by means of direct measurements. A comprehensive performance summary of the
Montecarlo simulations is reported in Table 5, including the mean computational time.

Table 5: Estimation RMSE and run time

%A [m] %̇A [m/s] AB/A [deg] AB/I [deg] β [rad/s] ωA/I [rad/s] Time [s]

VIS 11.823 0.032 0.108 3.237e-03 7.936e-07 4.462e-07 28.0854
TIR 17.265 0.029 0.127 3.069e-03 7.917e-07 4.808e-07 28.0731

VIS & TIR 8.885 0.030 0.084 3.174e-03 7.941e-07 4.121e-07 28.4203

As expected, since star tracker measurements are not related to camera ones, the gyroscope bias
and inertial attitude estimation errors do not change according to the selected modality. Analyzing the
computational load associated to each sensing modality, it can be concluded that only a modest 1%
increase occurs when both VIS and TIR camera output is processed by the filter. This computational
load is mainly due to the evaluation of the Mahalanobis distance, since it involves matrix inversion
operations.

5. Conclusion

This paper investigates the possibility of combining visible and thermal infrared imagery for relative
navigation and mapping of small celestial bodies. The presented analyses show that despite the re-
duced resolution of TIR imagers, classical feature-based navigation algorithms can still produce mean-
ingful results. Given the promising results obtained on synthetically generated images, further studies
will be carried out exploiting the experimental facility at Politecnico di Milano Department of Aerospace
Science and Technologies. The developed filtering scheme is a clear advantage for the relative state
estimation. Furthermore, the combination of the inertial and relative attitude dynamics makes it possible
to include the asteroid’s angular velocity in the state vector. Results highlight that TIR-based measure-
ments can improve both the accuracy and the robustness of the state estimation algorithm. Again, a
more extensive analysis needed for the filtering block to assess its performances when dealing with
direct IP measurements.
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