

PDC 2021
Vienna, Austria

Please submit your abstract at
<https://atpi.eventsair.com/7th-iaa-planetary-defense-conference-2021/abstractsubmission>

You may visit <https://iaaspace.org/pdc>

(please choose one box to be checked)

(you may also add a general comment - see end of the page)

Key International and Political Developments

Advancements in NEO Discovery

× **New NEO Characterization Results**

Deflection & Disruption Modeling and Testing

Mission & Campaign Design

Impact Consequences

Disaster Response

The Decision to Act

Public Education and Communication

**IDENTIFYING POSSIBLE BIAS IN ASTROMETRIC OBSERVATIONS
OF POTENTIALLY HAZARDOUS ASTEROIDS AND OTHER HIGH
RISK NEAR-EARTH OBJECTS**

Anatoliy Ivantsov^{a,b,c,*}, Siegfried Eggl^{c,d,e,f}, Daniel Hestroffer^c

^a*Department of Space Sciences & Technologies, Faculty of Science, Akdeniz University, Dumlupınar Boulevard Campus, Antalya, 07058, Turkey, +90 242 310 2264*

^b*Royal Observatory of Belgium, Ringlaan / av. Circulaire 3, Brussels, BE-1180, Belgium*

^c*Paris Observatory – IMCCE, PSL University, Sorbonne Université, Lille University, CNRS, av. Denfert-Rochereau 77, Paris, F-75014, France, +33 1 4051 2016*

^d*Department of Astronomy, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA*

^e*Vera C. Rubin Observatory, Tucson, AZ 85719, USA*

^f*Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S. Wright St., Urbana, IL 61801, USA*

Keywords: potentially hazardous asteroids, near-Earth objects, impact risk, astrometry, Gaia

The IAU Minor Planet Center (MPC) hosts 250 million observations of Solar System Objects collected over centuries. The MPC has excellent quality control mechanisms in place that filter newly submitted data for errors. Identifying potential problems in past observations, such as the confusion of astrometric positions of Solar System Objects with those of nearby stars is less straightforward, but non-the-less a worthy endeavor, as past observations can torque current orbits. Even if astrometric observations are correctly attributed, stars close to the position of asteroids in the focal plane can cause a shift in the location of the measured photocenters that is rarely considered in astrometric practice. In this contribution we make use of the latest release of the Gaia astrometric catalog (EDR3) [1], [2] to identify past observations that could be affected by the presence of nearby stars. Of particular interest are objects on the NASA Jet Propulsion Laboratory, California Institute of Technology Center for Near-Earth Object Studies (CNEOS) Sentry Earth Impact Monitoring list.

^{*}Corresponding author

Email addresses: ivantsov@akdeniz.edu.tr (**Anatoliy Ivantsov**), eggl@illinois.edu (**Siegfried Eggl**), Daniel.Hestroffer@obspm.fr (**Daniel Hestroffer**)

As of January 18, 2021, 22 near-Earth asteroids have both cumulative impact probability greater or equal 10^{-6} , and a cumulative hazard rating greater or equal “-4” in the Palermo scale. Only three of them, namely (29075), (99942) Apophis, and (101955) Bennu, have well-determined orbits. Half of the rest have data-arcs spanning less than a week. As very short arc orbits such as these are generally based on a small number of observations, each astrometric measurement has a considerable impact on the preliminary orbit of those objects. Thus, errors, in particular systematic ones, however small, can affect impact probability estimates.

We have identified those astrometric observations of the 22 asteroids on the Sentry Earth Impact Monitoring list that may have been affected by the presence of nearby stars. A 2D correlation between the differences ($O - C$) calculated for each asteroid position and the direction to neighboring stars suggests the presence of a detectable bias. We show that this bias can be corrected via an analytic expression if additional observational data is available ($FWHM$, the actual difference in magnitudes between the stars and the asteroid) or through fitting the bias parameters under some assumptions on a per-observatory basis to ($O - C$) values otherwise. The former alternative is preferred as the suggested bias is only one of the contributors to the systematic error budget.

Comments:

Submission for oral presentation.

References

- [1] Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, M. Biermann, et al., “Gaia Early Data Release 3: Summary of the contents and survey properties”, ArXiv e-prints: 2012.01533, 2020.
- [2] Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, et al., “The Gaia mission”, *Astronomy & Astrophysics* 595 (2016) A1.