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Arecibo radar NEA
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* A treasure chest for further analysis
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Geometric albedo

Radar scattering
properties
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Fig. 1. Distribution of NEA SC/OC versus absolute magnitude. Spectral classes are
indicated with different letters and colors. We adopt the classes described in Tholen
and Barucci (1989), which identifies 14 groups based on the shape of their visible
spectra and their albedos. S, Q, K, and L subclasses within the taxonomy in Bus et
al. (2002) have been grouped into the S class. Dark C and B objects are labeled as
“C.” Of the 214 objects in the radar sample, estimates of VIS/IR spectral class are

available for 113.
Benner et al. (2008)
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Polarization is indicative of
the surface roughness

= Smooth surfaces: Specular reflection Radar cross section:
492
—> All echo in the opposite-circular (OC) Opo] = ATR™ A" Pry pol
polarization than the transmitted signal PtxAgff
Radar albedo: 5
= Rough surfaces (wavelength-scale R Opol - en(39'5 )
surface roughness or boulders): Opol = A . : o
Quasi-specular + diffuse scattering proj
SC/OC ratio:
—> Echo partly in the OC polarization and Ogc
partly in the same-circular (SC) polarization U = —

Ooc



OC radar albedo

The SC/OC ratio “hides” reflectivity information
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Investigating the OC- and SC- polarized

echoes separately is better...

OC = 3.131 *SC + 0.022
d=0.941

0.697 g/cm?
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...Whereas investigating the OC- and
SC- polarized echoes as a function of
incidence angle is the best approach!
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Scattering by wavelength-
scale particles

Forward
) | scattering paths
a: raQ .
}\/ increase the
7 J apparent
1 ‘k ) N reflectivity
\ ;’/ compared to
2 .% O N-1 including only
the Fresnel

reflection.

OC backscatter coeff.

SC backscatter coeff.
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— Undulations (ke =0.60, L=0.67))
— Boulders (N(r) =r"%), s.s. only
— Total (P,=0.010)
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The wavelength-scale particles play a major role!
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OC = 3.131 *SC + 0.022
d=0.941 + 0.697 g/cm?

- Vert. axis intercept is

related to the regolith
| density (& porosity)

5Q

albedos (due to multiple

scattering) depending on the |

system'’s electric properties

incidence angles

radar BSC of

Effective radar BSC of fine-grained
wavelength-scale regolith regolith\
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can increase both radar f
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Quasi-specular

backscattering coefficient
(05(6))

Several radar
scattering laws have
been developed

(with different
conditions), but only
for undulating
surfaces or empirically
to fit the data.

Incidence
angle

* Roughness parameter is “r.m.s. slope”.

* Interpretation is at best hand-waving for high
r.m.s. slopes.

* Better-established laws are work in progress.

8



Radar scattering by Bennu

* For Bennu, SHAPE

software gave R =
0.078 and C=0.56

(when Z—Z = RC (cos 0)2¢)

* For C << 10, diffuse

scattering by
wavelength-scale
regolith and structures

with radii in the
wavelength-scale
dominate
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Near-surface densities

* Different empirical equations have been
found for how the electric permittivity is
related to the density

 Densities of 1-6 g/cm3 using the radar-
derived radar albedos and permittivities is a
realistic range based on meteorite studies
(preliminary results promising!)
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Radar properties of wavelength-scale particles
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Backscattering as a function of size parameter
and refractive index (using sphere clusters)
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Conclusions

e Radar is a powerful tool for characterizing the size, shape, and
composition of NEOs

* The interpretation of the radar scattering properties of asteroids, for
which the wavelength-scale particles may dominate the echo, is often
hand-waving using the traditional interpretation that was suitable for
the Moon and the planets

* New radar-scattering modeling work can move from less ambiguous
surface-roughness parameters than the SC/OC ratio or rms slope to
more reliable characterization

* Deconvolves the reflectivity (electric properties) from the roughness

* Furthermore, a distribution of near-surface densities of NEOs can be derived
and size estimation’s uncertainties can be better constrained



