
StrictDoc project

Roadmap, challenges, and a reference implementation

Stanislav Pankevich, Reflex Aerospace GmbH

Software Product Assurance Conference 2025

ESA – ESTEC, Netherlands

22-25.09.2025

Achieving end-to-end traceability
in software projects
using open source tools

StrictDoc project

About the speaker

● Software Lead at Reflex Aerospace, a satellite manufacturing startup in Berlin.

● Several startups before, mostly small companies.

My worlds:

1) Space industry, spacecraft onboard software development.

2) Open source software development:

a) StrictDoc documentation tool and ReqIF Python library

b) Mull fault injection system for C/C++ and FileCheck.py, Python port for LLVM FileCheck.

This presentation is about a personal project. The views expressed are my own and do not represent those of my employer.

StrictDoc project

Agenda

● What is traceability, and why does it matter?

● The challenges of implementing traceability with open source software

● The StrictDoc project

● Further work and closing remarks

StrictDoc project

— Nancy Leveson, Safeware: System Safety and Computers (1995)

● How can developers work more effectively with requirements during software development?

● How to connect code to requirements?

● Which tools are needed to support this connection?

“The vast majority of accidents in which software was involved can be traced to
requirements flaws and, more specifically, to incompleteness in the specified
and implemented software behavior — that is, incomplete or wrong
assumptions about the operation of the controlled system or required operation
of the computer and unhandled controlled-system states and environmental
conditions. Although coding errors often get the most attention, they have more
of an effect on reliability and other qualities than on safety.”

“
Motivation for this work:
Bridging requirements and software

StrictDoc project

Requirement = (Statement + meta information)

Common fields:
TITLE, STATEMENT, RATIONALE, COMMENT

Unique identifiers:
MID / UID (machine- vs human-readable)

Additional meta information:
STATUS, TAGS, LEVEL, PREFIX

Industry-specific meta information:
e.g., ASIL(A,B,C,D), VERIFICATION (R,A,I,T)

Relations/roles:
e.g., parent, child, parent/refines, etc.

Example of a real-world requirement

(adopted from ECSS-E-ST-40C):

UID: ECSS-E-ST-40_0860055

ECSS_REQ_ID: 5.4.2.3a

TITLE: Construction of a software logical model

STATEMENT: The supplier shall construct a logical

model of the functional requirements of the software

product.

EXPECTED_OUTPUT: Software logical model [TS, SRS; PDR].

StrictDoc project

What is Traceability?

In software development, traceability refers to the ability to track and link artifacts across the software

development lifecycle. This typically means creating explicit connections between requirements, design, code,

tests, and documentation.

World of S0ftware

Documents

Source code and tests

Auto-generated code

Doxygen

Test reports

Code coverage reports

World of Systems

Documents

Requirements

Models

StrictDoc project

High-level
requirement

Feature / Function

Design item

Source file

Test resultCode coverage

Test case

Low-level
requirement

Activity
(Development plan)

Instruction
(Development guide)

Development
config/script

Mixed content from multiple tools:

● Documents
● Source code elements
● Auto-generated artifacts

How can we connect all these
artifacts together?

Traceability graph and its nodes

StrictDoc project

1) There is no tool that connects all artifacts together in a single representation.

2) There is limited open-source tooling for the World of Systems.

3) Exchanging data and metadata between tools and formats. Which human-readable format to use?

World of S0ftware

Documents

Source code and tests

Auto-generated code

Doxygen

Test reports

Code coverage reports

World of Systems

Documents

Requirements

Models

Word, Excel, Jira
or

informal exchange

JSON/XML

REST API

ReqIF

SPDX

.md, .rst, .adoc.c, .h, .py

.c, .h, .py, .xml

XML, JSON

XML, JSON

HTML, XML

Traceability — Three challenges

StrictDoc project

StrictDoc — Open source requirements tool

● Spare-time project for 2 core developers. 22 contributors so far.

● Created in 2019.

● Inspired by Doorstop's OSS approach to Git-based requirements management.

● Written in Python.

● Apache 2 license.

● 1.8K pull requests, 5K+ commits, 30K+ LOC.

Key highlights:

● 2020-2022: Documentation generator, HTML export, ReqIF, tracing source files to requirements,

document grammar and custom fields, traceability graph validations.

● 2023: Web-based user interface. The HTML-to-PDF feature for publishing documents.

● 2024: Language-aware traceability to C/C++ and Python.

● 2025: Extending traceability to test and coverage reports, preparing for safety-related qualification.

StrictDoc project

● Starting point: Format to support text and metadata.

● YAML frontmatter does not scale to large documents.

● RST directives do not support nested metadata.

● JSON is less human-readable, and so are HTML/XML.

● Nesting content in a document with 4+ chapter levels

does not scale visually.

SDoc ('strict-doc') is a practical compromise inspired by:

● YAML – nested meta information fields

● TOML – keys in square brackets

● XML/HTML – opening/closing tags for nested content

● ASN.1 – Capital letters.

.SDoc format

StrictDoc project

Two ways to link code and requirements

Relation markers: Link code to requirements.

Use when can control source code 🛠 directly.

Forward relations: Link requirements to source code.

Use when source code 🔒 cannot be modified.

class ProjectStatisticsGenerator:
 def export(
 self,
 project_config: ProjectConfig,
 traceability_index: TraceabilityIndex,
) -> Markup:
 """
 Export project statistics to an HTML page.

 @relation(SDOC-SRS-97, scope=function)
 """

[REQUIREMENT]

UID: SDOC-SRS-97

TITLE: Project statistics generator

STATEMENT: StrictDoc shall generate project statistics.

RELATIONS:

- TYPE: File

 VALUE: strictdoc/generators/project_statistics.py

 FUNCTION: ProjectStatisticsGenerator.export

1 2

StrictDoc project

Attach metadata to source code

● The comments are parsed as SDoc nodes.

● An auto-generated document is created from

a provided template.

Use case example:

● Generate a test specification from source code.

● The test spec items are linked to requirements.

/**
 * \brief Test example
 *
 * @relation(REQ-1, scope=function)
 *
 * INTENTION: ...
 *
 * INPUT: ...
 *
 * EXPECTED_RESULTS: ...
 */
TEST_CASE("Test example", testExample)
{
 ...
}

StrictDoc project

● Export documents.

● The default export is static HTML.

● Work with editable documentation.

● Starts a web server. Static HTML that is editable.

1 2

Command-line / IDE workflow Web interface

strictdoc export <input_dir> strictdoc server <input_dir>

StrictDoc — Two workflows

StrictDoc project

● StrictDoc supports exporting to PDF, Excel, ReqIF, SPDX, RST, JSON, and importing from Excel and ReqIF.

● The most developed format for bi-directional exchange from/to SDoc is ReqIF.

SPDX (ongoing)
● SPDX is parsed using the official SPDX libraries.

● The SPDX Functional Safety Working Group (FuSa)

is working on standardizing the requirements model.

● Tech. exchange between StrictDoc and SPDX FuSa:

● Can SPDX be used for creating/editing

requirements, not just auditing?

● SDoc as a valid SPDX representation: Establishing

bi-directional equivalence.

When a general algorithm is hard to achieve, a custom Python converter always works.

ReqIF (mostly implemented)
● Python ReqIF parser/unparser is part of StrictDoc.

● SDoc and ReqIF are mostly compatible.

● SDoc export is ReqIF schema-compliant.

● ReqIF uses XHTML for "rich" markup → StrictDoc

supports the RST, HTML, pure Text markup modes.

● Future work: Handling images and tables.

SDoc and other formats

��

https://github.com/spdx/meetings#functional-safety-profile-group-meetings
https://github.com/spdx/spdx-3-model/pull/1061/files

StrictDoc project

Use case: The Zephyr project

● The Zephyr Safety Working Group is working to make the Zephyr RTOS certifiable

for use in safety-related projects:

○ Zephyr Safety Overview and Safety FAQ

● StrictDoc is used in three ways:

○ Engineering: Technical requirements are captured in SDoc files in a dedicated Git repository:

https://github.com/zephyrproject-rtos/reqmgmt.

○ Safety and Quality Management: Capturing plans, verification checklists and guidelines. Safety-related IEC

61508 compliance documentation.

○ Safety Assessors: The assessment checklist captures the assessor’s expectations and serves as the entry point for

finding compliance information in the Zephyr documentation.

See also our FOSDEM 2024 talk: Application of the SPDX Safety Profile in the Safety Scope of the Zephyr Project.

https://github.com/zephyrproject-rtos/zephyr/blob/3269b49b660de1868785a588df1c01e6b6665339/doc/safety/safety_overview.rst
https://github.com/zephyrproject-rtos/zephyr/wiki/Safety-FAQ
https://github.com/zephyrproject-rtos/reqmgmt
https://archive.fosdem.org/2024/events/attachments/fosdem-2024-3211-application-of-the-spdx-safety-profile-in-the-safety-scope-of-the-zephyr-project/slides/22714/SPDX_Safety_Profile_-_Zephyr_StrictDoc_Example_4BSSrzW.pdf

StrictDoc project

Use case:
Operating system development at Linutronix
● Technical documentation for IGLOS, a secure Linux-based OS for industrial use, started in

2024 from scratch using StrictDoc (no commercial RE tools).

● Structure based on arc42, extended with requirements, compliance matrix, threat model,

and user guide.

● Edited via Web UI or text editors, reviewed in GitLab MRs. HTML export deployed

to an internal web server. A diff-UI supports requirement reviews.

● Requirements trace to Robot/pytest tests and GitLab reviews.

Code accessed via Git submodules. Minor scripting for custom import/export.

External PDFs interfaced by converting ToC to *.sdoc.

● Certification according to IEC 62443-4-2 accomplished, EU CRA upcoming.

Gap analysis by sending HTML/PDF exports to certification body.

Audit focused on StrictDoc "Compliance Matrix" document including

conformity statements.

StrictDoc project

The potential use of StrictDoc in the space industry

● ECSS standards form the foundation of traceability in any European space project.

● ECSS standards are available as Doors and Excel imports.

● ReqIF export from Doors could be an option if the full ECSS content was needed, e.g., images and tables.

The following interfaces are readily available:

Interface 1:
Convert ECSS Excel to SDoc with Python

Convert ECSS Excel to SDoc with a Python script.

Each ECSS document's requirements are stored in a

dedicated SDoc file. The requirement metadata is

preserved as-is.

Interface 2:
Work with ECSS DRDs encoded in SDoc format

The strictdoc-templates repository contains the

examples of the ECSS-E-ST-40C DRD templates for:

● Software System Specification (SSS)

● Software Requirements Specification (SRS).

https://github.com/strictdoc-project/strictdoc/blob/main/tools/ecss/import_ecss_earm_excel.py
https://github.com/strictdoc-project/strictdoc-templates

StrictDoc project

Further work

● Multi-user Git workflow

○ Concurrent use

○ Committing to Git from the web UI

○ User accounts

● Integration with other tools

● Analyzing and acting on requirements with AI

● Testing large multi-repo projects

● Traceability mechanics is a research topic in its own right:

○ The tooling is in place but how to connect requirements to software in the best way?

○ The easiest approach: connect requirements to whole source files.

○ How to join a parent project traceability graph with third-party OSS/OTS project graphs?

StrictDoc project

Closing remarks

1) The words of Systems and Software can be connected with open source software.

2) Translation between tools and formats is possible and is an ongoing topic.

3) Individuals and companies are invited to collaborate, with a special welcome to the space industry. 🚀

Can we make requirements an effective, systematic part of software development?

StrictDoc project

Contact information and relevant links

StrictDoc core team:

● Stanislav Pankevich, s.pankevich@gmail.com

● Maryna Balioura, mettta@gmail.com

Documentation:

● StrictDoc project

● StrictDoc roadmap

● StrictDoc large slide deck

Get in touch with the community:

● StrictDoc GitHub issues

● StrictDoc's mailing list and Discord channel

● StrictDoc office hours — Every Tuesday, 17:00–18:00 CET

StrictDoc's
large slide deck:

mailto:s.pankevich@gmail.com
mailto:mettta@gmail.com
https://strictdoc.readthedocs.io/
https://raw.githubusercontent.com/strictdoc-project/strictdoc/main/docs/_assets/StrictDoc_Workspace-Roadmap.drawio.png
https://github.com/strictdoc-project/strictdoc/blob/main/about/StrictDoc.pdf
https://github.com/strictdoc-project/strictdoc/issues
https://groups.io/g/strictdoc
https://discord.gg/4BAAME9MmG
https://strictdoc.readthedocs.io/en/latest/latest/docs/strictdoc_01_user_guide.html#1.1.1-StrictDoc-office-hours

StrictDoc project

Backup slides

StrictDoc project

Requirements as a tool

● Requirements capture project decisions.

● Requirements are the foundation of traceability.

○ Each requirement is uniquely identified.

○ Requirements can be linked to each other for formal tracking.

● Requirements can be used to manage work.

○ Requirements drive project organization and work breakdown.

○ Requirements define contracts and acceptance criteria.

● Requirements can be used for measurements.

● Requirements are powerful abstractions.

SYS-222 The spacecraft shall be designed
and verified to achieve a minimum
reliability of 99.7% over the mission
duration, as defined from launch through
end-of-life, including all nominal and
contingency operations.

MIS-111 ← SYS-222

60% of requirements are already
implemented by a contractor.

87% of requirements are verified
by test.

Requirements define the 'public interface' of the work performed;

the source code is the implementation.��

StrictDoc project

Why does Traceability matter?

● Connect intent with implementation

○ What was requested is what was implemented.

● Coverage information

○ Reduce the chance of missing requirements or building incorrect functionality.

○ Ensure every requirement is tested and verified (forward traceability).

○ Ensure every feature or test is tied to an actual need (backward traceability).

● Traceable development process and project memory

○ Prove that contractual or legal obligations are fulfilled.

○ Onboard new engineers and preserve rationale over time.

○ Prevent duplication, scope creep, and orphaned work.

● Impact analysis

○ If a requirement changes, what else has to be changed?

What?
Why?
How?

Software
Solution

StrictDoc project

StrictDoc project

StrictDoc project

Traceability metrics

● Two interconnected features: Statistics and Search.

● Writing project-specific statistics generators in Python.

● Calculate total numbers of entities.

● Calculate the number of present and missing relations.

● Each statistic can be queried individually.

● Inspired by the ECSS SW metrication HB:

○ Requirements coverage

○ Calculate a number of TBD/TBC.

StrictDoc project

Feedback from the user community

● Many users want the same feature set, many users want something else.

● As of Q3 2025, there are 65 open feature requests of various types.

● Features that are in high demand are implemented with higher priority.

● Tech keywords from the requested features and interfaces to other tools, new and recently implemented:

Ada
Rust

JavaScript
BashAsciiDoc

Markdown

LaTeX

Capella MBSE
OSLC

TestIF

Excel

ReqIF
Doors

Polarion

OpenAPI

SPDX

JUnit

Robot framework

Enterprise Architect

