
VERIFICATION & VALIDATION OF OPTIMISATION-BASED CONTROL SYSTEMS:
METHODS AND OUTCOMES OF VV4RTOS

Pedro Lourenço(1), Hugo Costa(1), Pedro Cachim(1), João Branco(1), Pierre-Loı̈c Garoche(2),
Arash Sadeghzadeh(2), Jonathan Frey(3), Gianluca Frison(3), Moritz Diehl(3),

Anthea Comellini(4), Valentin Preda(5)

(1)GMV, Alameda dos Oceanos 115, 1990-392 Lisboa, Portugal, +351 213829366,
{palourenco,hsequeira,pedro.cachim,jbranco}@gmv.com

(2)Ecole Nationale de l’Aviation Civile, Universite de Toulouse, France, {first.last}@enac.fr
(3)SYSCOP, IMTEK, Georges-Köhler-Allee 102, 79110 Freiburg, Germany,

{first.last}@imtek.uni-freiburg.de
(4)Thales Alenia Space France, 5 Allée des Gabians, 06150 Cannes, France,

anthea.comellini@thalesaleniaspace.com
(5)ESA-ESTEC, Keplerlaan 1, PO Box 299 2200 AG Noordwijk, The Netherlands,

valentin.preda@esa.int

ABSTRACT

VV4RTOS is an activity supported by the European Space Agency aimed at the development and
validation of a framework for the verification and validation of spacecraft guidance, navigation,
and control (GNC) systems based on embedded optimisation, tailored to handle different layers
of abstraction, from guidance and control (G&C) requirements down to hardware level. This is
grounded on the parallel design and development of real-time optimisation-based G&C software,
allowing to concurrently identify, develop, consolidate, and validate a set of engineering practices
and analysis & verification tools to ensure safe code execution of the designed G&C software
as test cases but aimed at streamlining general industrial V&V processes. This paper presents:
1) a review of the challenges and the state-of-the-art of formal verification methods applicable to
optimization-based software; 2) the implementation for an embedded application and the analysis
from a V&V standpoint of a conic optimization solver; 3) the technical approach devised towards
and enhanced V&V process; and 4) model-in-the-loop test results and conclusions.

1 INTRODUCTION

Iterative embedded optimisation algorithms [1], [2] are paramount for the success of new and ex-
tremely relevant space applications: from launcher operations [3] to orbital servicing (including active
debris removal), assembly, and manufacturing [4], from actuator allocation [5] to attitude guidance
& control [6]. Guaranteeing the safe, reliable, repeatable, and accurate execution of such software is
extremely important, not only due to their safety-critical applications but also to increase the trust in
on-board optimisation-based algorithms and foster their adoption throughout the industry.
Convex optimization offers numerous benefits and is of great practical importance in various fields,
especially when deploying optimization algorithms in real-time and safety critical system. The main
advantages are the theoretical guarantees of global optimality, ensuring that numerical solvers can not
get stuck in local minima and global convergence can be guaranteed independent of the initial guess.

ESA GNC-ICATT 2023 – P. Lourenço et al. 1

Highly efficient convex optimization solvers exist which allow solving the problems in polynomial
runtime and have been successfully deployed for large-scale systems and in real-time scenarios, [7].
Classes of convex problems range from linear programming over quadratic programming to second
order cone programming. Even more general nonlinear programming solvers, such as sequential
quadratic programming (SQP) often rely on solving convex sub-problems. The essential elements
of a G&C, when implemented solving optimisation problems (OP) as shown in Figure 1, typically
linearise, relax and convexify underlying Nonlinear Programming (NLP) formulations that often stem
from the discretization of a continuous time Optimal Control Problem (OCP). Thus, it is essential to
have a reliable and efficient convex optimization solver at hand.

Tactical layer Actuation sub-layer

Strategic layer

C
om

pl
ex

ity
Tim

e-criticality

Planning
reference

Mission
objectives

Performance
Requirements

Safety
Requirements

Full Nonlinear
Model

NL Optimal
Control
Problem

MODEL

CONSTRAINTS

CF

Simplified
Plant Model

NL Optimal
Control
Problem

MODEL

CONSTRAINTS

CF
Control

desired commands

Actuator
Limits / Configuration

AMF
commands

NLP
Optimisation

Problem
CONSTRAINTS

COST FUNCTION

Abstraction

Translation layer:
Linearization, relaxation, convexification, discretization, transcription,...

SW
output

Algorithm:
Mathematical design and development, numerical software

Figure 1: The development and operation of optimisation-based guidance and control systems: trajectory plan-
ning (guidance), tracking or regulation (control), and actuation allocation (actuator management).

Classical verification and validation (V&V) of G&C places a severe emphasis on comprehensive
testing of the developed software within a model-in-the-loop (MIL) setting, thus enlarging the effort
in the final stages of development and precluding the potentially beneficial reiteration of earlier stages.
Even though testing is the ultimate tool for qualifying a new design, it is very difficult to generalise any
results. Introducing formal verification methods to locally V&V components of the G&C software
will not only ensure the safe execution of the related code, but also allow their reuse in other designs.
When the V&V-ed component is a core one such as the optimisation solver, which is indeed the
workhorse of an optimisation-based G&C system, this significantly enhances and expedites future
designs.
It is therefore of utmost importance to develop verification means appropriate to support optimisation-
based control systems. One of the issue in control system design processes is the gap between the
design of a proper controller and its implementation as a system or a software. We propose here to
consider the convex optimisation algorithm itself as a regular system subject to classical system engi-
neering approaches. System Engineering provides a framework based on both the early identification
of requirements and their later verification and validation. Instead of considering such numerical
solvers as off-the-shelf black-box components, we rather define an adequate set of requirements and
their validation means. Formal methods, such as formal specification and deductive methods, can be
used to formally specify these requirements and reason on their validity.
In general, the VV4RTOS - Verification & Validation of Safety-Critical Real-time Optimised Guid-

ESA GNC-ICATT 2023 – P. Lourenço et al. 2

ance Navigation and Control (GNC) SW Systems - study aims to contribute to the widespread usage
of convex optimisation-based techniques across the space industry by 1) augmenting the traditional
GNC software Design & Development Verification & Validation (DDVV) methodologies to explic-
itly address iterative embedded optimisation algorithms; and 2) consolidating the necessary tools for
the fast prototyping and qualification of G&C software, grounded on strong theoretical foundations
for the solution of convex optimisation problems generated by posing, discretization, convexification,
and transcription of nonlinear non-convex optimal control problems to online-solvable optimisation
problems.
To fulfil this mandate, two avenues of research and development were followed: the design and
implementation of a benchmarking framework with optimisation-based G&C implementations and
the improvement of the V&V process — two radical advances with respect to traditional GNC DDVV.
On the first topic, the new optimisation-based hierarchy was exploited, from high-level requirements
and objectives that can be mathematically posed as optimal control problems, themselves organised in
different levels of abstraction, complexity, and time-criticality depending on how close to the actuator
level they are. The main line of this work is then focused on the core component of optimisation-based
G&C — the optimisation solver -– starting with a formal analysis of its mathematical properties that
allowed to identify meaningful requirements for V&V, and, concurrently, with a thorough, step-by-
step, design and implementation for embedding in a space target board. This application-agnostic
analysis and development was associated with the DDVV of specific use-cases of optimisation-based
G&C for common space applications of growing complexity, exploring different challenges in the
form of convex problem complexity (up to second-order cone programs), problem size (model pre-
dictive control and trajectory optimization), and nonlinearity.
The novel V&V approach relies on the combination and exploitation of the two main approaches:
classical testing of the global on-board software, and local and compositional, formal math-driven
verification. While the former sees systems as black boxes, feeding it with comprehensive inputs
and analysing statistically the outputs, the latter delves deep into the sub-components of the soft-
ware, effectively seeing it as white boxes whenever mathematically possible. The deep analysis of the
mathematical properties of the optimisation algorithm allows to derive requirements with increasing
complexity (e.g., from “the code implements the proper computations”, to higher level mathematical
properties such as optimality, convergence, and feasibility). These are related to quantities of interest
that can be both verified resorting to E-ACSL [8] specifications and Frama-C [9] in a C-code imple-
mentation of the solver [10], but also observed in online monitors in Simulink or in post-processing
during the model/software-in-the-loop testing.
Finally, the activity will apply the devised V&V process to the benchmark designs, from model-in-
the-loop testing, followed by auto-coding and software-in-the-loop equivalence testing in parallel with
the Frama-C runtime analysis, and will be concluded by processor-in-the-loop testing in a Hyperion
on-board computer based around a Xilinx Zynq 7000 SoC.

2 V&V CHALLENGES AND STATE-OF-THE-ART

Verification & Validation are, typically, the final stages of the development of a G&C software. They
ensure that there is sufficient confidence that the system will perform in operation as required by the
mission objectives and as intended in the design. Given that it is generally not possible to accurately
reproduce operational conditions on ground, this process must include the mathematical modelling
of the operational setting and resort to analysis and simulation based on these models. It is divided
in [11]: 1) Verification, which is the proof that the G&C function performs according to the specifica-
tion under which it was developed; and 2) Validation, which is the proof that the G&C function will
behave as expected under real world conditions.

ESA GNC-ICATT 2023 – P. Lourenço et al. 3

In general, whenever safety-critical functions are discussed, it is particularly important to minimise
all concerning risks prior to operation. The typical process is in accordance with the relevant ECSS
standard [12], i.e., the reference for the development of AOCS/GNC systems. The AOCS/GNC design
is consolidated using a Model-In-The-Loop (MIL) simulator that implements mathematical models
of the hardware equipment, simulation of spacecraft dynamics and space environment, and model
prototypes of the AOCS/GNC algorithms. After verification of the main performance requirements,
the design is frozen and the AOCS/GNC engineers can produce the software requirement specification
that is used as reference for production and implementation of the AOCS/GNC software application.
The software application is validated with simulations in Software-In-The-Loop (SIL) environment,
similar to the MIL simulator but this time implementing the final algorithms (usually C code) and
the complete software application (including the mode logic, telecommands, telemetries etc.) instead
of the prototypes (MATLAB code; and usually simplified functional implementation). A phase of
Processor-In-The-Loop (PIL) testing is done just after to verify the correct behaviour (run time, mem-
ory usage, data precision etc.) of the software application on a processor with identical (or similar)
features than the one that will be used in flight.
Finally, once the other hardware elements are available (on-board computer, sensors, actuators) the
whole system is tested in the avionic test bench (Hardware-In-The-Loop, HIL, verification).
This approach is fundamentally grounded on the testing paradigm, i.e., on statistical analysis of nu-
merical simulations – including specific cases, nominal scenarios, identification of worst cases, Monte
Carlo techniques. This classical testing of the global on-board software sees systems as black boxes,
feeding them with comprehensive inputs and analysing statistically the outputs. In opposition, lo-
cal, math-driven, verification delves deep into the sub-components of the software, effectively seeing
them as white boxes whenever mathematically possible. This dichotomy is further covered by fig-
ure 2. In between the two approaches lies the optimal path to a thorough, dependable, mathematically
sound verification and validation process: local, potentially application-agnostic, V&V of the build-
ing blocks with respect to mathematical specifications leading up to application-specific testing of
global complex systems, this time informed by the results of local validation and testing.

Local Math-driven V&V
GNC components

Classical Global testing

Inputs Outputs

Application-specifc FES
GNC

Problem Set
Up Transcription Optimisation

Solver

Monitor &
Command
Manager

Real World

Actuators Dynamics Sensors

It is hard to reason analytitically with respect to mathematical
properties in the presence of nonlinear and hybrid effects. A
test-driven approach allows to capture the impact of such
effects and to verify and validate the complete software as
developed ready for application.

Looking only at inputs and outputs of the system does not
provide enough granularity to detect and explore
particularities of the developed software, especially when it
includes iterative algorithms such as optimisation solvers.
The black box approach is also severely shorthanded in the
replication and extension of results for other applications.

Validation through
Formal Methods

Mathematical
specification

Source code

Validated
Software

Component

Algorithm
component

Optimisation Solver

Linear
Algebra tools

Condensing
routines

Factorization

KKT solution

Residuals
computation

Interior Point
Method

Interior Point
Method

Interior Point
Method

Formal methods allow to validate each
component of the software with respect to the
specifications set by its mathematical
description but also by low level
requirements refined from higher level ones
incrementaly.
The formal validation of increasingly complex
components is not always a feasible option:
- mathematical specifications may not be
directly reflected in source code components
- the theoretical validation problem may be
unfeasible
In these cases, validating local components
as black boxes through testing is a good
option.

Figure 2: Comparison of the classical global testing approach followed by the GNC industry with formalism-
inspired local math-driven approach from the computer science field and software industry.

ESA GNC-ICATT 2023 – P. Lourenço et al. 4

2.1 Review of optimisation-based software

It was clear from the start of the project that the immensity of methods and software available, from
active-set methods, interior-point methods, or first-order methods, would require essentially a sepa-
rate in-depth study of each of these optimisation algorithms. In the scope of this activity, a single
method had to be selected. Regarding deterministic runtime, interior point and first order methods are
preferred over active-set methods, since limiting the number of iterations typically leads to a solution
that is acceptable in the context of embedded optimization, while this is not generally true for active
set methods, although some upper iteration bounds can be established with explicit MPC techniques.
With respect to V&V, first order methods have some major benefits. Firstly, they only require simple
linear algebra operations (like matrix-vector multiplications), while IPMs typically require matrix de-
composition or inversions. If the underlying linear algebra implementation needs to be V&Ved, this
simplifies the verification process of a first-order method compared to an IPM. Additionally, factor-
ization and decomposition is more prone to numerical issues compared to the basic operations used
in a first-order method. On the other hand, these methods are more sensitive to the scaling and con-
ditioning of the optimisation problems, potentially requiring the usage of complex pre-conditioning
techniques.

2.2 Survey of formal V&V approaches

In “An Axiomatic Basis for Computer Programming” [13], HOARE defines a deductive reasoning to
validate code level annotations. This paper introduces the concept of HOARE triple {Pre}code{Post}
as a way to express the semantics of a piece of code by specifying the postconditions (Post) that are
guaranteed after the execution of the code, assuming that a set of preconditions (Pre) was satisfied.
HOARE supports a vision in which this axiomatic semantics is used as the “ultimately definitive spec-
ification of the meaning of the language [. . .], leaving certain aspects undefined. [...] Axioms enable
the language designer to express its general intentions quite simply and directly, without the mass of
detail which usually accompanies algorithmic descriptions.”
This formalization is an essential step to specify the intended behaviour of a program. It shall be
the main reference when describing the specification, rather than, or in addition to, natural language
specification. Furthermore, formal specification, in the form of Hoare triple, can support the validation
of test-based activities but also enable the use of formal reasoning algorithm to ensure its validity in
all possible uses.

Formalizing specification. Multiple frameworks such as the B method [14], ACSL [15] (ANSI
C Specification Language) or SPARK ADA [16] provide means to specify formally the expected
behaviour of a model or software function. These languages allow to define mathematical objects
such as sets, theorems, predicates, axioms and attach them to code using these Hoare pre- and post-
conditions.

Reasoning formally on code using logics. After the proposition by Hoare [13] to attach contract to
functions, Dijkstra proposed to mechanically transform these predicates along the code. Depending
on the direction of propagation, one obtains the weakest precondition computation or the strongest
postcondition computation. In the former case, the post-condition is propagated backward from the
last instructions of the code towards the beginning of the function body. The resulting predicate are
then compared with the other element of the Hoare triple. In the weakest precondition computation
setting, one needs to ensure that the specified pre-condition is logically stronger than the weakest
one computed that ensures to obtain the post-condition after executing the code. It is an implication:
Pre =⇒ WeakestPrecondition(code, Post).

ESA GNC-ICATT 2023 – P. Lourenço et al. 5

Once this proof objective is produced, it remains to prove it. The two main options are either the
use of automated reasoning – Satisfiability Modulo Theory (SMT) solvers, e.g., Z3 [17], CVC5 [18],
Alt-Ergo [19] – or manual proof using proof assistants such as Coq, PVS or Isabelle.

Reasoning formally on code using sets. The previous methods are extremelly expressive but lim-
ited to the capabilities of the underlying solvers to discharge the proof objectives. When considering
numerical software or numerical properties performed with machine types such as floating point num-
bers, the axiomatisation of the computation produces difficult proof objectives.
Another alternative method to reason about the validity of safety properties, ie. invariants of program
states, is static analysis, also known as abstract interpretation. It was introduced by Cousot and
Cousot [20] in the 70s. Here, checking the validity of property amounts to check set inclusion. Let
R(each) be the set of reachable states and G(ood) be the set of good, of valid, states. Checking that
all computed values – the reachable ones – are valid, amounts to check that R ⊆ G.
Abstract interpretation provides tools to compute over-approximation of sets. The idea is that if we
are able to capture the set of good states in a set G but have issues computing R exactly, we can
compute an over-approximation R̃ such that R ⊆ R̃ and check the sufficient condition R̃ ⊆ G.
Sometimes G is also difficult to represent but one could characterize its complement B(ad), or even
an over-approximation B̃ of B: B ⊆ B̃, and verify that R̃ ∩ B = ∅, or the sufficient condition
R̃ ∩ B̃ = ∅, i.e. no reachable state is bad.
These methods are usually more fitted to bound numerical errors due to floating point computations
and can be combined with the previous deductive methods.

3 DESIGN AND DEVELOPMENT OF AN EMBEDDED CONIC OPTIMISATION SOLVER

In the context of optimisation-based control, quadratic programming (QP) or second order cone pro-
gramming (SOCP) formulations are essential. In order to react to disturbances, model-errors and
changing references quickly, the control loop has to be carried out in a short and deterministic run-
time. Fast and robust QP, QCQP or SOCP solver implementations are thus an essential backbone
for the embedded deployment of optimization based control and are the main scope of optimization
software to be V&Ved in this project.

3.1 Background

The previously mentioned categories of OPs can fit within the larger category of conic optimisa-
tion, which aims at the minimisation of a differentiable convex objective function subject to conic
constraints, i.e.,

minimize
z

f(z)

subject to z ∈ D,
Hz− g ∈ K

(1)

where z ∈ Rn is the decision variable, f : Rn → R is a continuously differentiable and convex
objective function, K ⊂ Rm is a closed convex cone and D ⊂ Rn is a closed convex set, H ∈ Rm×n

and g ∈ Rm are constraint parameters. A convex set K is a cone [7, Section 2.1.5] if ∀x ∈ K and
γ > 0 then γx ∈ K. The polar cone of K is also a closed convex cone given by

K◦ := {w ∈ Rm | ⟨w, y⟩ ≤ 0,∀y ∈ K }. (2)

The burden lies on the GNC engineer to transform a performance or safety requirement into con-
straints that can be expressed as these convex sets or cones, so that the problem can be specified in

ESA GNC-ICATT 2023 – P. Lourenço et al. 6

a form that the optimisation solver can handle. Fortunately, the typical constraints that appear on
GNC problems (actuation limits – limited norms, pointing restrictions – “ice-cream”cones, collision
avoidance – balls) can be expressed as small list of convex sets (balls, boxes, half-spaces) and cones
(the origin, the set of reals, orthants, second-order cones) which accept a closed-form projection:
πC [x] = arg min

∀y∈C
∥x− y∥ is the projection of x to set C.

3.2 Proportional-Integral Projected Gradient solver for conic optimisation

PIPG is a first-order algorithm for convex optimisation [10] that has important theoretical convergence
guarantees: it converges to the optimal solution with j2 and to a feasible solution with j3 for strongly
convex problems (convergence is linear for weakly convex ones). Given its very interesting properties,
in VV4RTOS this solver was implemented in embedded MATLAB and Simulink and its convergence
results were used as a basis for the V&V analysis.

Algorithm 1 PIPG
Input: M , {αj, βj}Mj=1, z1 ∈ D, v1 ∈ K◦

Output: zM

1: for j = 1, 2, . . . ,M do
2: wj+1 = πK◦ [vj + βj(Hzj − g)]
3: zj+1 = πD

[
zj − αj(∇f(zj) +H⊤wj+1)

]
4: vj+1 = wj+1 + βjH(zj+1 − zj)
5: if Stopping criterion then
6: break loop
7: end if
8: end for

In algorithm 1, which solves (1), each j-th iteration outputs an estimate of the optimal dual solution,
wj ∈ Rnd , of the optimal primal solution, zj ∈ Rn, and an intermediate dual term vj ∈ Rnd . The in-
put M ∈ N is the maximum number of iterations and {αj}Mj=1 and {βj}Mj=1 are sequences of positive
scalar step sizes – whose structure of computations is imposed by the theoretical convergence guaran-
tees. This being a first-order method, it relies on the gradient of the cost function for the steps towards
the solution, expressed as ∇f . In addition to the maximum number of iterations, other stopping cri-
terion can be used, such as the duality gap, distance to the cone K, or the speed of convergence. The
VV4RTOS embedded implementation of algorithm 1 enforces

f(z) = zTPz+ qTz, (3)

with positive definite P, and provides simple and efficient projections to both closed convex sets
(balls, boxes, halfspaces) and closed convex cones (origin, orthants, the set of reals, second order
cones). These can be employed by the user to build their own constrained sets when posing their
optimisation problems.

3.3 Solver analysis

The excellent convergence results of PIPG, provided by [10, Theorem 2], rely on a number of assump-
tions related to the convexity and smoothness of the cost function (evaluated through the eigenvalues
of P if f is defined as in (3)), the feasibility of the OP (related to the primal-dual gap), and formulas
for the primal (αj) and dual (βj) steps

αj = 2
(
(j + 1)µ+ 2λ

)−1
, βj = (j + 1)µ (2σ)−1 , αj

(
λ+ σβj

)
= 1, (4)

ESA GNC-ICATT 2023 – P. Lourenço et al. 7

where µ and λ are the smallest and largest eigenvalues of P, and σ > ∥H∥2. The main result, from
which the mentioned convergence rates are extracted, is as follows: given that these assumptions hold,
a sequence of primal and dual iterates of PIPG respects

L(z̄k,w)− L(z, w̄k) ≤ 4λV 1(z,w)

µk(k + 5)
(5)

d̄K
(
Hz̃k − g

)
≤ 12λσV 1(z⋆,w⋆)

µ2k(k2 + 6k + 11)
(6)

where z̄k, z̃k ∈ D and w̄k ∈ K◦ are linear combinations of the elements of the sequence, L(·, ·) is the
Lagrangian associated with (1), d̄K(·) is the square of the distance to the cone K, and V 1 is a function
of the distance to the initial guesses of both primal and dual.
Aside from the above assumptions, the proofs of these results are based on a number of inequalities
and conditions that should inform as well the verification process. Examples of these inequalities that
should hold for the convergence results to be valid are

d̄K
(
Hzj − g

)
≤ 1

2

∥∥∥∥ 1

βj

(
vj −wj+1

)∥∥∥∥2

, (7)

and

L(zj+1,w)− L(z,wj+1) + βdK
(
Hzj − g

)
≤

(
1

2αj
− µ

2

)∥∥zj − z
∥∥2

+
1

2βj

∥∥vj −w
∥∥2 − V j+1(z,w). (8)

As will be seen in the sequel, the requirement for convergence to optimality and feasibility, which is
the core requirement underlying the more high-level performance requirements of any G&C software
that uses optimisation algorithms, is translated into implementation, problem-specific, parametric,
and execution requirements that feed directly from these elements of the formal proofs. This is the
natural path to be followed in a formal-infused V&V: to distil high-level requirements to more and
more specific requirements associated with the mathematical properties of the algorithms.

4 ENHANCED V&V OF OPTIMISATION-BASED G&C ALGORITHMS

Once the choice of a specific algorithm has been made, we now need to build the sets of requirements
that will drive its implementation and, later, its verification and validation.
In order to illustrate the different processes to perform this V&V activity, two tracks are followed in
the VV4RTOS project: 1) one based on formal methods, where we rely on Frama-C, an open-source
toolbox providing different tools to perform formal verification of C code, and more specifically on
the E-ACSL plug-in, supporting dynamic checks; 2) one based on a classical development process
with MIL/SIL/PIL in which we aim at infusing methods defined in the first track.

4.1 Overview of formal approach

4.1.1 Identifying requirements from algorithm descriptions and proofs

In this study we focus on conic optimisation and a first simple set of requirements could only focus
on the expected outcome: a solution to the solved optimisation problem which is a feasible solution
of the set of constraints, and optimal with respect to other possible solutions. Typically this is what

ESA GNC-ICATT 2023 – P. Lourenço et al. 8

is evaluated when considering the component as a black-box. A set of experiments will rely on the
solver and the obtained solution compared with expected values.
However, we want to trust more the component itself. As a result we need to gather more fine-grained
elements to build a complete set of requirements. We rely on the algorithm description and its proof
elements, as summarized in the previous section, to identify properties that have to be fulfilled or
satisfied by the implementation.
We structured these requirements in four sets:

• Implementation related requirements (RIM), mainly focused on the validity of the operations
used: linear algebra computations, projections to sets, computation of gradients, etc.

• Requirements specific to the optimization problem (RPR); concerns more mathematical prop-
erties of the problem description: is the problem convex?, is the cost function differentiable?,
etc.

• Requirements of the parameters (RPA): local elements definitions, like local variables of the
program and their expected properties, e.g., do they belong to specific sets?

• Requirements of the execution (REX) of the algorithm. Semantics properties justifying the
convergence of the algorithm, or the computation of a feasible and optimal value.

The table 1 gives one example for each of such categories of requirements.

Table 1: Example of requirements extracted from the algorithm description, focused on set K◦.

Req. ID. Requirement description Rationale
VV-RIM-
042

Projecting vector w ∈ Rn onto polar
cone K◦

Algorithm 1

VV-RPR-
041

K◦ is a polar cone of K Algorithm 1; see eq. (2)

VV-RPA-
006

wj+1 belongs to K◦ Algorithm 1; to make sure that the projection
step onto set K◦ is correctly performed

VV-REX-
011

(8) holds for all z ∈ D and w ∈ K◦ [10, Appendix D]; the main condition based
on which the convergence to zero of
primal-dual gap and violation of constraint
are derived. Result of [10, Lemma 1].

4.1.2 Associating means of compliance to requirements

We now aim at expressing them as program logical statements, that is, predicates over the program
variables. We can partition our set of requirements into different categories depending on their nature
or our ability to analyse them. Table 2 presents such a list of categories.

Table 2: Categorisation of requirements with respect to the ability to evaluate them on code.

CAT1 simple predicates over program variables

CAT2 predicate relying on mathematical objects or computation that
are not directly available as functions in the code

ESA GNC-ICATT 2023 – P. Lourenço et al. 9

CAT3 similar concerns but expressed over quantities that do not appear
in the code

CAT4 requirements that involve universal quantification over elements
of a set

CAT5 requirements that involve existential quantification over elements
of a set or over quantities that are not available or computable in
the source code

CAT6 requirements that describe more general properties of
mathematical object and that are not directly expressible over
program variables

Once these requirements are identified and classified we have to identify for each of them an appro-
priate mean of compliance, i.e., a verification method aimed at validating them. Here a wide set of
methods is available, from classical and less formal ones, such as code reviews, to complete proof
using the deductive method mentioned above.
In order to provide a realistic approach to the problem considered, we proposed a three level method:

1. to rely on reviews to check most purely mathematical properties of the problem itself;

2. to formalize specification and evaluate it while testing using executable formal specification;

3. to specify and prove basic properties on linear algebra components.

In the first (the weakest) level the properties are both mainly guaranteed by construction and not easy
to validate in the code. For example requirements stating that the cost function is differentiable, that
the cone K◦ is the polar of the cone K of constraints, etc.
The third level is the most challenging one since it requires a considerable amount of effort to achieve
the proofs. For the moment, we focused on basic linear algebra operations such as matrix vector
additions and multiplications. Ideally the second level shall be addressed with this exhaustive proof
approach, but this is not realistic within the scope of the project. This amounts to introduce numerous
predicate, lemmas, theorems and prove them to validate most properties. A similar approach has
already been illustrated for the ellipsoid method [21] and a primal interior point method for LP [22].
The main activity is therefore on the second level: specifying formally the requirement in such a way
that these requirements can act as test oracle when executing the code, or an instrumented code.

4.1.3 Test-based approaches and quantifiers

An interesting intermediate approach between formal proof and test is supported by the tool Frama-
C1 and its E-ACSL plug-in. While ACSL is a very generic language to express specification and C
code providing axiomatic semantic definitions, lemmas, properties, predicates and theorems, a lot of
its logical elements cannot be executed. A typical example is the use of a quantifier over a large set,
i.e., not a small enumerable one.
On the logical side it is perfectly expressible and can be used to prove properties over the program.
However, it is difficult to execute as a regular program statement. E-ACSL considers both a restriction
of the ACSL language, but also a plug-in to instrument annotations into runtime checks.
In the project, we propose to express the requirements in E-ACSL. Some extra quantities have to be
defined, like additional local variables encoding convergence results. These quantities appear in the

1Available from https://frama-c.com/

ESA GNC-ICATT 2023 – P. Lourenço et al. 10

https://frama-c.com/

proof but typically not in the algorithm itself. Relying on E-ACSL amounts to declare ghost code:
code that will be executed for verification purpose but is not supposed to be part of the final product.
Regarding quantifiers, we are facing two issues. Existential quantifiers are used to describe a specific
value which is usually not known a-priori; for an example the goal of the computation, i.e., the
primal-dual solution. In that case, we propose, for verification purposes only, and for the ones based
on test, to run a first computation to get these values and instantiate these quantifiers with them.
Universal quantifiers have a different role: they aim to express that a property is valid for a full set.
In that case, we can either sample the set using Monte-Carlo-like techniques, or gather elements of
these sets during the execution and evaluate these properties on the accumulated values.

4.2 Overview of MIL verification

The approach described in the previous sections is focused on the verification of the source code,
even though it also resorts to test for runtime verification. The underlying concept is clear: formal
requirements from the mathematical proofs should be extracted, and then these can be associated to
quantifiers resulting effectively in test oracles. This idea can naturally be ported to the model-in-the-
loop level, infusing the traditional MIL test campaigns with more in-depth verification procedures.
When V&V-ing a “regular” control system, the main concern is the closed-loop behaviour: high-
level performance metrics are evaluated, more esoteric concepts such as stability are addressed, etc.
Depending on the nature of the control algorithms, some of these aspects are preliminarily addressed
at design level both through design choices (e.g., weights, gains, other tuning parameters) and analysis
tools (e.g., by assessing gain and phase margins for linear controllers, using µ-analysis for robust
controllers, etc.). This implicit process can be applied to more advanced control systems relying on
the solution of optimisation problems, as seen in Table 3.

Table 3: Example of flow-down of requirements, from higher-level to design choice, from design choice to
lower-level.

Level Requirements Mapping to
design

High-level
requirements
(closed-loop)

Functional requirements (e.g, control system shall
minimize propellant consumption)

Cost function
selection.

Performance requirements (e.g, final dispersion shall be
smaller than X units)

Constraint
definition.

Mission requirements (e.g, control function shall use
less than Y units of propellant)

Constraint
definition.

Safety requirements (e.g, collisions shall be avoided) Constraint
definition.

Hosting requirements (e.g, control function shall
compute in less than Z% of the sampling time)

Algorithm choice.

G&C-level
requirements
(closed-loop
and function
output)

Constraint satisfaction (e.g, do the predicted and
effective trajectories respect the (possibly nonconvex)
safety constraints?)

Algorithm choice.

Solution optimality (e.g, is this trajectory fuel-optimal?) Algorithm choice.

ESA GNC-ICATT 2023 – P. Lourenço et al. 11

Level Requirements Mapping to
design

Convergence of the solver (e.g., is a solution obtained
within the allotted time?)

Algorithm choice.

Solver
requirements
(function
output and
inner compu-
tations)

Algorithm description- and proof-based requirements
(e.g., see table 1)

Parameters
meeting algorithm
assumptions.

OBSW

Design & Implementation

OCP

nonlinear
nonconvex

continuous time

CONSTRAINTS

COST FUNCTION

MODEL

OCP

linear/quadratic
convex

discrete time

CONSTRAINTS

COST FUNCTION

MODEL

OP

linear/quadratic
convex

discrete time

CONSTRAINTS

COST FUNCTION

Compositional
Verification

Inspection

Design

Deductive Methods

Static Analysis

Test

monitor

certify for particular case

Optimization
Properties

Convergence

Feasibility

Optimality

Numerical Solver
COST FUNCTION

CONSTRAINT SET

STEP SIZE

BOUNDS

Derives Validates

Process flow

Figure 3: Verification & validation layers for optimization-based G&C software.

High-level requirements, effectively verified by GNC closed-loop simulation, can be translated in
the design process to elements of optimal control problems (the objectives written as cost functions,
performance and safety requirements as constraints) and then distilled into requirements at the G&C
level – verified at the closed-loop but also at function output. Since a relevant number of the problems
is nonlinear and nonconvex, sequential convex programming is used, resulting in optimisation prob-
lems solved by convex solvers. Therefore, these requirements can again be translated into a deeper
level – verified at the output and inner variable level – effectively ensuring the correct execution of
the solver software/models. This process is also shown in figure 3.

5 PRELIMINARY RESULTS

5.1 Benchmark problems

To apply the V&V approach described above, a set of benchmark problems were developed and
implemented based on the PIPG solver described in section 3: 1) actuator allocation (thruster opening
times); 2) model predictive control for far-range rendezvous; and 3) sequential convex programming
for rendezvous.
The second benchmark problem implements a guidance algorithm for a chaser rendezvousing with
an uncooperative target in geostationary orbit (GEO). The objective is for the chaser to perform a

ESA GNC-ICATT 2023 – P. Lourenço et al. 12

sequence of impulsive transfers to a holding-point behind the target, using a reaction control system
(RCS). The time-instants at which the impulsive transfers are allowed are predetermined and fixed.
The model used in the optimiser for the relative dynamics between the chaser and the target are the
Clohessy-Wiltshire equations [23]. The final position and velocity of the chaser relative to the target
are constrained to be inside boxes. There is a maximum ∆V-budget, given as the maximum sum of
the 1-norms of each ∆V. For each impulse, there is a maximum ∆V allowed to be applied for each
direction in the LVLH frame. The cost penalises the velocity impulses by minimizing the sum of the
1-norm of the ∆Vs, while also penalising quadratically the final distance to the holding-point. The
algorithm is implemented as a shrinking-horizon MPC, solving the optimization problem

minimize
x(ti+1),∆V(tk)

i=k,...,f−1

1

2
(r(tf)− rHP)

T Qr (r(tf)− rHP) +R

f−1∑
i=k

1T |∆V(ti)| (9a)

subject to x(ti+1) = Φ (ti, ti+1)x(ti) +G (ti, ti+1)∆V(ti), (9b)
x(tk) given, (9c)

r(tf),v(tf) ∈ Rf × Vf , (9d)
f−1∑
i=k

1T |∆V(ti)| ≤ ∆Vbudget, (9e)

|∆V(ti)|∞ ≤ ∆Vmax. (9f)

The problem is transformed to a strongly convex by condensing the dynamics to a single equality
constraint involving only the initial and final states and the ∆Vs; decomposing the ∆V impulses
into their positive and negative parts; adding the total spent budget as an optimization variable; and
adding regularisation costs to the final relative velocity, spent budget, and positive and negative parts
of the ∆Vs.
To improve the convergence of the optimisation algorithm, preconditioning of its matrices (cost Hes-
sian and cone Jacobian) is implemented offline.
The algorithm was implemented in a Simulink block capable of being auto-coded. The block receives
the current relative position and velocity of the chaser relative to the target, the available ∆V budget,
and the current time-instant. It outputs the ∆V which the optimizer calculates for the current time-
step. The block was integrated into a Functional Engineering Simulator that simulates the movement
of the target using a Keplerian orbit and the dynamics of the chaser using the universal law of gravita-
tion, with thruster models to perform the velocity impulses, and position and velocity sensor models.

5.2 Verification & Validation at MIL level

5.2.1 Performance Requirements

The results of a nominal simulation of the rendezvous benchmark problem are presented in figure 4.
The target is in a circular orbit with an altitude of 35 793 km. The chaser starts with a position
of (−1278.1, 0, 500) km relative to the target in its LVLH frame, and an initial relative velocity of
(54.69, 0, 0)m/s. After 62 hours, the chaser is required to reach the holding-point at the relative posi-
tion of (−200, 0, 0)m± 10m with each velocity component less than 1 m/s. The impulsive transfers
are allowed every 3 hours since the start, with each ∆V component not exceeding 10 m/s in each
transfer, and not exceeding the ∆V-budget of 20 m/s. For the cost in the guidance algorithm, Qr is
chosen as a diagonal matrix with diagonal elements 1 m−2, R is 1× 10−3 s/m, and the regularisation
costs as 1 × 10−2 in their respective SI units. It can be seen that in this nominal simulation the re-
quirements on the final relative position (figure 4a) and velocity (figure 4b), ∆V impulses (figure 4c),

ESA GNC-ICATT 2023 – P. Lourenço et al. 13

(a) Trajectory in the LVLH frame (b) Relative velocity (m/s) in the LVLH frame

(c) ∆V (m/s) in the LVLH frame (d) Available and spent ∆V-budget (m/s)

Figure 4: Rendezvous nominal simulation

and ∆V-budget (figure 4d) are satisfied. The PIPG optimisation algorithm takes roughly 500 itera-
tions per instant, except at 54 h, when it takes 2 000. The linearised model used in the optimisation
algorithm is found to have a significant error relative to the simulated dynamics, but the guidance
function is able to successfully re-optimise the ∆Vs during the rendezvous, leading to differences in
∆Vs that are applied relative to the nominal solution; most noticeably the appearance of the ∆Vs
smaller than 1 m/s in figure 4c. Nonetheless, the spent ∆V-budget of 16.2 m/s turns out to be less
than nominal one calculated by the algorithm in the initial instant of 18.15 m/s.

5.2.2 PIPG Requirements

A small subset of the requirements identified for the verification and validation of PIPG are shown in
table 4. The compliance with respect to these requirements was verified through the use of test oracles
that evaluate a given quantity in each iteration of the algorithm and check if the condition is satisfied.
To account for numerical errors a small threshold is considered in the verification of the requirements
that include equalities (i.e., those expressed by f(·) ≥ 0 or g(·) = 0). Figure 5 shows the value of the
quantities verified in each requirement.

5.3 Verification with Frama-C

The verification with Frama-C and E-ACSL follows this process. First, we define, in comment,
E-ACSL constructs: here a ghost variable declaring some threshold, set to zero, and an assert.

ESA GNC-ICATT 2023 – P. Lourenço et al. 14

Table 4: Sample PIPG requirement verification

Req. Id. Description Condition Threshold Success ratio
VV-REX-002 Assumption αj(λ + σβj) = 1

of [10, Lemma 1] holds (see (4))
equality 1× 10−16 100%

VV-REX-006 Consequence of [10, Theorem 2]
on the distance to the cone holds
(see (6)).

inequality 1× 10−16 100%

VV-REX-010 Condition B.14 of the proof of [10,
Lemma 1] holds (see (7)).

inequality 1× 10−16 100%

100 200 300 400 500

0

2

4

6
10

-16

(a) VV-REX-002

100 200 300 400 500

0

2

4

10
-16

(b) VV-REX-006

100 200 300 400 500

-6000

-4000

-2000

0

(c) VV-REX-010

Figure 5: Quantities corresponding to the PIPG requirements, with maximum threshold for acceptance (dashed)

1 //@ ghost double eps = 0;
2 //@ assert z1[0]*z1[0] + z1[1]*z1[1] <= a*a * (1 + eps);

Contracts can also be attached to functions.
We can then run the E-ACSL script:

% e−acsl −gcc . sh − l ” −lm ” −c −omonitored . c pipg . c p r o j e c t i o n s . c u t i l s . c l i n a l g . c
It will instrument the source code and produce both the original binary and the instrumented one.
A first positive outcome of such an instrumentation is to detect bugs in the specification or in the
source. As an example during our experiments, we miss-characterized the definition of set K◦: instead
of |x| ≤ 0.2y we used |y| ≤ 0.2x. This lead to the definition of an erroneous check inKnot(·). Note
that the check of inclusion in K◦ is usually not part of the algorithm. The set K◦ is also typically not
explicitly characterized. This is part of the specification activity to do so.
When running the tests, the projections - which were properly coded - were not validated. The error
found lead to an analysis of both the code and the specification and allowed us to identify the error in
the specification. A black-box test may have missed this case.
Note that we have to be careful with equality constraints such as the one expressed in the right-hand
side of (4), and demonstrated as follows.

% . / a . out . e−acs l
pipg . c : In function ’ main ’
pipg . c :166 : Er ro r : Asser t ion f a i l e d :
The f a i l i n g p red ica te i s :
alpha * (c o s t l b d + s ig * beta) − 1 == 0.
With values a t f a i l u r e po in t :
− beta : 1.500000e+00

ESA GNC-ICATT 2023 – P. Lourenço et al. 15

− s ig : 1.000000e+00
− c o s t l b d : 1.000000e+00
− alpha : 4.000000e−01

While the property shall apply in a Real semantics, the computation with machine-type floating point
number lead to a violation. Similar issues arrive when a point is projected at the frontier of a set
before checking it belong to the set.
Such requirements have to be relaxed to allow minimal errors, if allowed by the algorithm or the
designers.

6 CONCLUSIONS AND FUTURE WORK

The VV4RTOS project is studying the verification and validation of optimisation-based guidance and
control software, allowing to increase the trust in such methods and advancing the state-of-the-art
of these verification procedures. In this paper, sound guidelines are provided, informed by formal
verification methods and resulting in a mixed testing-proof approach. The use of optimisation-based
algorithms allows to create a clear mapping from high-level requirements to optimisation elements
(cost function, constraints) which then transfer the burden of verification to the verification of the un-
derlying optimisation solver. This last step is achieved starting with a formal review of the algorithm
description and mathematical specifications, which feed the creation of a new set of requirements that
can be enforced through review, executable formal specification, and formal proof depending on their
complexity. This V&V approach is employed using Frama-C on a toy optimisation problem, and at
MIL level in MATLAB/Simulink on a set of benchmark problems (actuator allocation, rendezvous in
GEO). Until the conclusion of the project, the MIL-SIL-PIL test campaign pipeline will be fully exe-
cuted further demonstrating the combined enhancements of the V&V process and optimisation-based
software.

ACKNOWLEDGEMENTS

The work presented in this article was carried out under, and funded by, the European Space Agency’s
Technology Development Element (TDE) programme (ESA contract No. 4000136721/21/NL/CRS
“Verification and validation of real-time optimised safety-critical GNC SW systems”). The views
expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

REFERENCES

[1] J. Nocedal and S. Wright, Numerical Optimization (Springer Series in Operations Research
and Financial Engineering), Second. Springer, 2006.

[2] X. Liu, P. Lu, and B. Pan, “Survey of convex optimization for aerospace applications,” Astro-
dynamics, vol. 1, no. 1, pp. 23–40, Sep. 2017.

[3] N. Paulino, C. Roche, L. Ferreira, et al., “Fault Tolerant Control for a Cluster of Rocket En-
gines – Methods and outcomes for guidance and control recovery strategies in launchers,” in
Proceedings of the 12th International ESA Conference on Guidance, Navigation & Control
Systems, Sopot, Poland: ESA, Jun. 2023.

[4] P. Colmenarejo, J. Branco, N. Santos, et al., “Methods and outcomes of the COMRADE project
- Design of robust Combined control for robotic spacecraft and manipulator in servicing mis-
sions: Comparison between between Hinf and nonlinear Lyapunov-based approaches,” in 69th
International Astronautical Congress (IAC), vol. IAC-18-F1.2.3, Bremen, Germany, Oct. 2018.

ESA GNC-ICATT 2023 – P. Lourenço et al. 16

[5] T. A. Johansen and T. I. Fossen, “Control allocation—A survey,” Automatica, vol. 49, no. 5,
pp. 1087–1103, May 2013.

[6] V. Preda, A. Hyslop, and S. Bennani, “Optimal science-time reorientation policy for the Comet
Interceptor flyby via sequential convex programming,” CEAS Space Journal, Jun. 2021.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[8] J. Signoles, N. Kosmatov, and K. Vorobyov, “E-ACSL, a Runtime Verification Tool for Safety
and Security of C Programs (tool paper),” in RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verifica-
tion Tools, Kalpa Publications in Computing, Sep. 2017, pp. 164–173.

[9] P. Baudin, F. Bobot, D. Bühler, et al., “The dogged pursuit of bug-free C programs: The Frama-
C software analysis platform,” Communications of the ACM, vol. 64, no. 8, pp. 56–68, Aug.
2021.

[10] Y. Yu, P. Elango, U. Topcu, and B. Açıkmeşe, “Proportional-Integral Projected Gradient Method
for Conic Optimization,” Automatica, vol. 142, p. 110 359, Aug. 2022.

[11] W. Fehse, Automated Rendezvous and Docking of Spacecraft. Cambridge University Press,
Nov. 2003.

[12] ECSS, “Satellite attitude and orbit control system (AOCS) requirements,” European Coopera-
tion for Space Standardization, Standard ECSS-E-ST-60-30C, Aug. 2013.

[13] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12,
pp. 576–580, Oct. 1969.

[14] J.-R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

[15] J. Gerlach, “ACSL by example. v22.0.0,” Fraunhofer, Tech. Rep., 2021, p. 291.

[16] L. Creuse, J. Huguet, C. Garion, and J. Hugues, “SPARK by example: An introduction to
formal verification through the standard c++ library,” Ada Lett., vol. 38, no. 2, pp. 89–96, Dec.
2019.

[17] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms for the
Construction and Analysis of Systems, 2008, pp. 337–340.

[18] H. Barbosa, C. W. Barrett, M. Brain, et al., “cvc5: A versatile and industrial-strength SMT
solver,” in TACAS’22, ser. LNCS, vol. 13243, 2022, pp. 415–442.

[19] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout, “Alt-Ergo 2.2,” in SMT Workshop:
International Workshop on Satisfiability Modulo Theories, Oxford, United Kingdom, Jul. 2018.

[20] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints,” in POPL ’77, ACM, 1977, pp. 238–
252.

[21] R. Cohen, E. Feron, and P. Garoche, “Verification and validation of convex optimization algo-
rithms for model predictive control,” CoRR, vol. abs/2005.12588, 2020.

[22] G. Davy, E. Feron, P. Garoche, and D. Henrion, “Experiments in verification of linear model
predictive control: Automatic generation and formal verification of an interior point method
algorithm,” in LPAR-22., G. Barthe, G. Sutcliffe, and M. Veanes, Eds., vol. 57, 2018, pp. 290–
306.

[23] W. H. Clohessy and R. S. Wiltshire, “Terminal guidance system for satellite rendezvous,” Jour-
nal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658, Sep. 1960.

ESA GNC-ICATT 2023 – P. Lourenço et al. 17

	Introduction
	V&V challenges and state-of-the-art
	Review of optimisation-based software
	Survey of formal V&V approaches

	Design and Development of an embedded Conic Optimisation Solver
	Background
	Proportional-Integral Projected Gradient solver for conic optimisation
	Solver analysis

	Enhanced V&V of Optimisation-based G&C algorithms
	Overview of formal approach
	Identifying requirements from algorithm descriptions and proofs
	Associating means of compliance to requirements
	Test-based approaches and quantifiers

	Overview of MIL verification

	Preliminary results
	Benchmark problems
	Verification & Validation at MIL level
	Performance Requirements
	PIPG Requirements

	Verification with Frama-C

	Conclusions and Future Work

