HD3: Hazard driven Decomposition, Design and Development Driving design by hazard analysis

Nicholas Mc Guire <safety@osadl.org> Markus Kreidl <mkreidl@opentech.at>

August 31, 2025

Motivation

- Growing complexity -> mandates maximized context
- Refocus on hazard elimination
- Heavy use of pre-existing elements
- Maintenance expecting high dynamics during life-time

This is using many ideas from other methods and is much more of an consolidation attempt in design context than a new method in its own right.

HD3: Hazard driven Decomposition Design and Development **Driving**

design by hazard analysis

Nicholas Mc Guire

<safety@osadl.
Markus Kreidl
<mkreidl@oper

Guiding Principle

HD3: Hazard driven

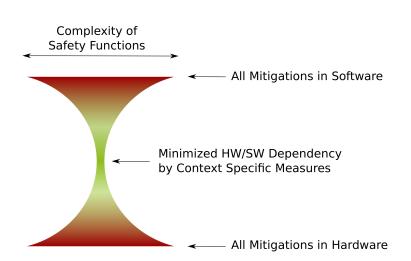
As far as practicable the design shall keep the safetyrelated part of the software simple.

[IEC 61508-3 Ed 2 7.4.2.6]

Thus using complex elements safely is the goal rather than making the complex elements safe!

Decomposition Design and Development **Driving** design by hazard

Nicholas Mc Guire < safety@osadl. Markus Kreidl


analysis

<mkreidl@oper

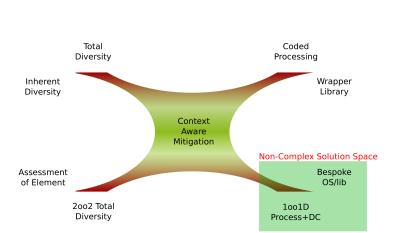
Context

HD3: Hazard

driven
Decomposition
Design and
Development
Driving
design
by

analysis

Nicholas Mc
Guire
<safety@osadl.
Markus Kreidl


hazard

Markus Kreidl <mkreidl@opei

Complex Systems - Solution Space

HD3: Hazard

driven
Decomposition
Design and
Development
Driving
design
by
hazard
analysis

Needs in Software Intensive Systems

- Exploratory methodology needed FMEA/FTA will not do
- Drive the design by hazards and not functionality to
 - Develop sufficient specific analytical context
 - Refocus on hazard elimination opportunities
 - Minimize complexity of safety functions
 - Maximize maintainability and support impact analysis
- Create a complete traceable hierarchy of safety related functions supporting defense in depth

You want a minimized "hazard-surface" and provide a fully understood hazard dependency or your impact analysis will be prohibitive. HD3: Hazard driven Decomposition Design and Development

Driving design by hazard analysis

Goal

HD3: Hazard

- Eliminating as many hazards along the way as possible by treating design as emergent
- Allocating suitable mitigations at multiple levels where necessary
- Developing and recording the entire hazard hierarchy to ensure maintainability of system-safety properties during modification

Our expectation is that in complex software centric safety related systems modification and retrofitting will by far more common than in traditional safety-related systems - provisions for this paradigm change we think are critical.

driven
Decomposition
Design and
Development
Driving
design
by
hazard
analysis

Starting Point - Design Intent

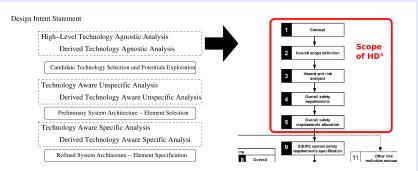
Measure and report E.Coli specific enzymatic activity per volume of sample (indicating the level of fecal contamination) in at most 15 minutes, with defined and verifiable level of assurance.

[Coliminder Design Intent]

- V-Model: Requirements -> Design -> implement ...
- HD3: Intent -> Hazards -> Mitigations -> Elements

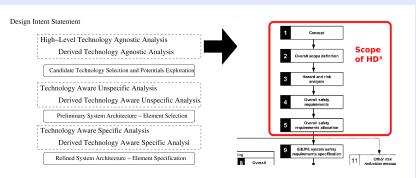
HD3: Hazard driven Decomposition Design and Development

Driving design by hazard analysis


Nicholas Mc Guire

<safety@osadl. Markus Kreidl <mkreidl@oper

HD3 Method Overview


HD3: Hazard

driven
Decomposition
Design and
Development
Driving
design
by
hazard
analysis

HD3 Method Overview

- Technology Agnostic Layer -> IEC 61508 Ed 2 Part 1
- Technology Aware Unspecific -> roughly IEC 61508 Ed 2 Part 2/3 requirements
- Technology Aware Specific -> roughly IEC 61508 Ed 2
 Part 2/3 design

HD3: Hazard driven
Decomposition
Design and
Development
Driving
design
by
hazard
analysis

HD3 High-level Example

Interpretation->Cause


```
# Item: run_NTask
## Origin: [TOP_Level](#top-level)
## Guideword: Other Than
```

Interpretation

- 1. Spurious CTask activated
- 2. Spurious halt initialized
- 3. Wrong Task set provided

Cause

- 1. Spurious CTask activated
 - 1. Faulty startup
 - 2. NTasks handling has access to CTasks
- 2. Spurious halt initialized
 - 1. NTask has access to halt (system control)
 - 2. Side-effect of NTask (shared resource)
- 3. Wrong Task set provided
 - 1. NTasks not properly managed
 - 2. NTasks not well selected
 - 3. Unauthorized access to system

. . .

HD3: Hazard driven Decomposition Design and Development

Driving design by hazard analysis

HD3 High-level Example - cont.

(OSADL

Consequence->Mitigation

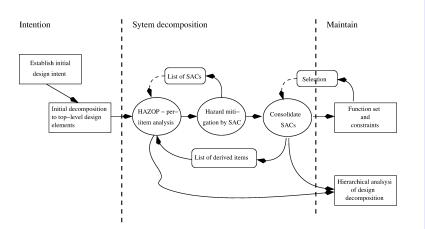
- ## Mitigation
- 1. Spurious CTask activated
 - 1. Faulty startup

 - Unexpected side-effect of configured valid resoruce
 - * [HLS_3] (#configuration-verification-failure-transits-to-halt))
 - * [HLS 7] (#task-set-verification-failure-transits-to-halt)
 - * [HLS_8](#All-CTasks-instantiated-prior-to-NTasks)
 - * [HLS_30] (#CTask-configurations-include-unique-ID)
 - * [HLS_36] (#Runtime-resource-isolation) * [HLS_54] (#CTask-shares-isolated-resources-with-CTasks-only)
 - * [HLS_99] (#Managed-deployment-of-all-system-elements)
 - * [HLS_100] (#Managed-selection-of-all-system-elements)
 - * [HLS_101] (#Access-control-violation-terminates-NTask)
 - Conflicting actions
 - * [HLS_3] (#configuration-verificaton-failure-transits-to-halt)) * [HLS_7](#task-set-verification-failure-transits-to-halt)
 - * [HLS_8] (#All-CTasks-instantiated-prior-to-NTasks)
 - * [HLS_36] (#Runtime-resource-isolation)
 - * [HLS_54] (#CTask-shares-isolated-resources-with-CTasks-only) * [HLS_99] (#Managed-deployment-of-all-system-elements)
 - * [HLS_100] (#Managed-selection-of-all-system-elements)
 - * [HLS 101](#Access-control-violation-terminates-NTask)
 - Conflicting actions Copyright OSADL eG. 2025. CC-BY-SA-4.0

HD3: Hazard

driven Decomposition Design and Development

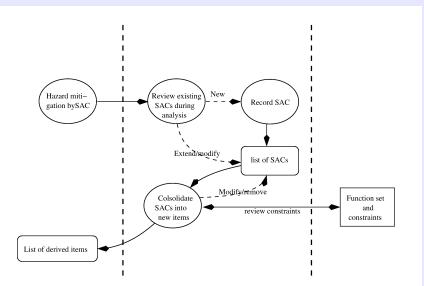
Driving


design by hazard

analysis Nicholas Mc Guire

< safety@osadl. Markus Kreidl <mkreidl@oper

HD3 Flow



HD3: Hazard
driven
Decomposition
Design and
Development
Driving
design
by
hazard
analysis

HD3 Continuous Consolidation

HD3: Hazard

Decomposition
Design and
Development
Driving
design
by
hazard
analysis

SAC development -> Requirements

HD3: Hazard

- 1 List of undeveloped SACs (synopsis only)
- Consolidate SACS -> merge "obviously" related SACs
- 3 List of SAC call sites -> context
- List of cases to protect against (causes) -> functional "specification"
- For each SAC develop full description
- Validate description against context (list of call-sites) -> safety specification
- If consistent specification not feasible -> split SAC -> update context

SAC description is then input to the protection code specification/implementation

driven
Decomposition
Design and
Development
Driving
design
by
hazard
analysis

Conclusion

- High-complexity systems need a minimizing design methodology with a focus on safety or complexity is unmanageable
- We need to regain the potentials for hazard elimination functionally driven methods encourage mitigation!
- HD^3 is experimental first results are encouraging if it really works we do not yet know
- Next step: find a mid complexity system and run HD³ e.g. lane assistant ...

driven
Decomposition
Design and
Development
Driving
design

HD3: Hazard

by hazard analysis

Guire
<safety@osadl.
Markus Kreidl
<mkreidl@opei

Thanks!

http://www.osadl.org/SIL2 safety@osadl.org

HD3: Hazard driven Decomposition Design and Development

Driving design by hazard analysis