

ATLAS-TEIDE: THE NEXT GENERATION OF ATLAS UNITS FOR THE TEIDE OBSERVATORY

Javier Licandro
John Tonry, Miquel Serra-Ricart, Miguel
R. Alarcón, Larry Denneau

PDC 2023 Conference, Viena, Austria 3 - 7 April 2023

Need for a new ATLAS design

Funded by "PROYECTO DE EQUIPAMIENTO CIENTÍFICO-TECNOLÓGICO PARA UN SERVICIO COMÚN DE INVESTIGACIÓN 2021" *Telescopio ATLAS en el Observatorio del Teide* - EQC2021-007122-P (Funding: **890.000 €)**

P. I.: Javier Licandro

Operation and Science operation agreement of ATLAS-Teide between the IAC & the Institute for Astronomy (U. of Hawaii)

ATLAS uses **50cm f/D= 2.0 Wright Schmidt telescopes**

50cm OTAs are not anymore accessible

- > 30% price increase
- Not available in < 2yr

It forced us to look for an alternative design

ATLAS-Teide: ATLAS next generation

ATLAS modules based on COTS:

- Optics: 4 x RASA11 OTAs.
- Cameras: QHY600PRO back-illuminated CMOS
- Mounts: improved Planewave L-500 (L-550 version)

4 RASA 11 mounted on a Planewave L-550, aligned to observe the same field

- Effective aperture combining the 4 images = 56cm
- Field of view ~7,35 deg² (1,26 arcsec/pix)
- \circ V = 19.5

With 4 ATLAS modules we can cover the same field of view of the actual ATLAS telescopes, with similar sensitivity allowing to cover ¼ of the night sky 4 times / night

Cheaper, easier to install and maintain and allow more observing modes.

ATLAS-Teide: QHY600 camera

Sensor: Sony IMX455

Sensor size: 9576 x 6388 px

Pixel size: 3.76 x 3.76 px

Read-out time: 0.15 ms

Mode #1 (High Gain 16-bits) Gain Mode: 0

Gain: 0.7930 +- 0.0011 e-

/ADU

RON: 3.334 e-

DC@-10°C: 0.002417 +-

0.000004 e/px/s

FWC: 51845 ke-

QHY600PRO

Real 16bit, back-illuminated 9x6K CMOS camera No glowing, no persistence, almost no dark current (see Alarcón et al. Poster, this meeting)

ATLAS-Teide: domes

We will use 2 existing buildings in the OT robotic telescope area

ATLAS-P

Phase 1 – build the 1st ATLAS module (ATLAS-P, a prototype) to test hardware and develop

software. Installed in November 2022 in Site 2.

ATLAS-Teide

4 ATLAS modules covering ~ 30 deg²

In a roll-off building (Site 1)

Minimum observing altitude 20 deg.

Telescope effective aperture and field similar to actual ATLAS ones.

Phase 2 – building of the 4 modules of ATLAS-Teide and installation in the Roll-off structure, site 1 around the end of 2023. This phase time-line strongly depends on the biding process ("Licitación")

A 7x3.5m platform with a roll-off structure we have been operating since 2019.

ATLAS-P: commisioning

The tests done with ATLAS-P demonstrates that this design fulfil the ATLAS requirements

ATLAS-P saw its first light on November 14, 2022. Tpointing map and the first on sky-tests:

- RMS pointing 11 arcsec
- Good tracking in > 2m exposures

- A simple analysis using Tycho Tracker demonstrate:
- Limiting magnitude detection > 20.0
- The Instrumental vs Calibrated magnitude plot is linear with slope = 1

- Combined image using the 4 telescopes
- 5x6s exposure time with each RASA11
- Images aligned just with rotation and shifts
- Images were median combined w/sigma clipping only
- FWHM < 2pix

- Combined 5x6s exposures with one of the telescopes
- FWHM < 2pix no significant field distorsion
- 4 Telescopes alignment better than 10 arcmin shift and rotation < 1 deg.

Bonus track: 2023 DZ2

ATLAS-P After close encounter 2023-03-27

TTT- 80cm Before close encounter 2023-03-22

ATLAS-Teide: data management

- The main chalenge is the reduction, analysis "on the fly" and storage of a massive amount of data
- Also the maintenance of this database
- 16 cameras, 9x6K pixels each (120Mb images) every 6s is > 10 Tb/night
- Intensive use of GPUs

USB3

February we will start testing our Linux control system & reduction package

Phase 3 – complete integration of ATLAS-Teide in the ATLAS network (mid 2024)

ATLAS-Teide: Conclusions

- 1st ATLAS module (ATLAS-P) installed and 1st commissioning done fulfil ATLAS requirements
- Complete the development of ATLAS-Teide software (summer 2023)
- ATLAS-Teide completed end 2023 early 2024

Advantages of the new design:

- 1) the design is much **cheaper** than the old one, each module cost ~1/10 of the actual ATLAS units;
- 2) an observatory can have the number of modules that can fund, so ATLAS network can easily grow
- 3) it is easier to build, install, maintain, and upgrade.
- 4) the use of CMOS cameras allows to do **very short exposures** without a noticeable dead time allowing to use different strategies to detect very fast moving targets
- 5) the four modules of ATLAS-Teide can be used in different ways, e.g. observe all telescopes the same field, then having a system with 1.1m equivalent aperture (an detect up to V^2 1 objects in 30s exposure times).

Other Benefits:

- 1) Increase the capabilities on NEO research of the Canary Islands Observatory
- 2) Impulse of the role of the Teide Observatory in the SSA programs
- 3) Access for the Spanish community to all ATLAS data products
- 4) Direct **comparison with Fly-Eye** (recommendation of the ESA SSA-AG)
- 5) 1st "Telescope-Array" based on COTS for NEO research in Europe: experience in the design, operation and science exploitation of a Telescope-Array (recommendation of the ESA SSA-AG)
- 6) Experience in the NEO search, fundamental for the next cornerstone mission of the ESA SSA-PD, NEOMIR

QHY vs ACAM

Wavelength [nm]

QHY worst QE & narrower wl coverage than ACAM. This strongly affect the filter selection

Also no automatic filter changer

Only one filter ($L \sim g+r$)

300.000 vs 7500 €

ATLAS-P: commisioning

Reasonalby good image quality even in the border of the images (FWHM < 2pix)

