FOCOS Mission Concept — Fundamental physics
with an Optical Clock Orbiting in Space

22,800 km
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Impacts of Optical Frequency Clocks
1. Metrology: Redefinition of the SI Second (within the next decade?)

2. Time Transfer: clock performance surpasses long-distance time
transfer capabilities (10-18 vs. 10-16)

Fiber networks over 1,000 km, free-space over 100 km.

3. Geodesy: clock performance exceeds geodetic knowledge at higher
altitudes. 10" < 1 cm

Chronometric geodesy — clocks in space
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4. New possibilities for next generation of fundamental physics tests

- Test General Relativity with much higher sensitivity
- Search for new physics

Tests of the Gravitational Redshift o
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FOCOS Mission concept -

A high-performance optical clock in an elliptical orbit

22,800 km

Optical clock performance: 1 x 1016 17/2, 1 x 10"18 uncertainty

Optical link: <1 x 10%® 11, < 5 x 10°%° bias

Range at periapsis known to Imm (two-way Doppler link) and velocity to 1um/s.
Orbit modulates gravitational potential: 2.4 x 10710 variation.

Orbit observation times (2 hours apoapsis, 30 minutes periapsis) enable
redshift uncertainty of 2.4 x 108 in 1% 8-hour orbits.
Average 100 orbits to reach 2.4 ppb.
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FOCOS Schematic g

NIST Dual Yb Optical lattice clock
Two-way optical link
Talk after break by Fabrizio
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FOCOS science goals
Fundamental physics:

1. Gravitational Redshift —improve the uncertainty by 30,000x to 2 ppb.

2. Local Lorentz Invariance (Kennedy-Thorndyke tests - SME coefficients)

Cavity-clock comparisons - orientation
and velocity

Large expected gains in sensitivity.

3. Test higher-order relativistic and gravitational effects

Requires precision orbit determination

GRACE, etc. for the gravitational field
4. Post-Newtonian effects on the satellite orbit (through two-way link data)
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FOCOS Science Goals — International Clock Network g

Improved network of earth clocks — a step towards a space network.

Fundamental physics:

5. Dark Matter searches in space and on Earth
—100to 1,000 X improvement

6. LPI tests —e.g., drifts of fundamental constants
Timing applications:

7. Worldwide timing: ns to ps level

8. Precision geodetic referencing at the mm-level

9. Space-time reference

Pathfinder-style mission for future atom interferometry (Equivalence Principle),
clock constellation in space, laser/atom-based gravity wave detection
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Timelines
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International collaborations are sought: SWaP development, reference cavities,
lasers and link hardware, theoretical contributions ...
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Choice of Orbit g

An 8-hour orbit enables observation of periapsis and apoapsis within 12 hours,
and reasonable ranges for the laser link.

Decreasing the perigee altitude gives a larger redshift variation, at the cost of
observation time (and drag for very low perigees).

An orbit inclination of 9° gives equal perigee and
apogee maximum elevations of 30°
at40° N for a 5,000 km perigee altitude.
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Detailed analysis is needed to determine precise period, RAAN, perigee
altitude ... to optimize worldwide visibility and redshift measurement.
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FOCOS Size Weight and Power -

The first cost estimate (S451M*) for FOCOS
conservatively used 500 W and 266 kg.

Actual power used by NIST portable Yb lattice clock
is ~500W (450 kg, 1.9 m3, A. Ludlow).

Minimal effort to reduce power, mass and size.

A recent exercise estimated 200 W for a lattice clock

Wesley Brand
with one comb (+ 50 W telescope and link with a 2"d comb, N. Newbury).

Target for S300M* NASA medium explorer mission class
(Explorers Program) is 210 W, 227 kg, and 0.5m3.

A modest investment in SWaP development is likely to meet those
requirements.
S5 to $10M of development may reduce mission cost by >5150M.*
(SWaP for a S200M* mission: 1770 W & 125kg)

Reducing lattice clock performance does not yield large cost reductions.

*Cost information is for budgeting and planning and is intended for informational purposes only. It does not constitute a commitment on the part of JPL or Caltech.
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