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ABSTRACT

This paper explores the application of stochastic continuation methods in the context of mission
analysis for spacecraft trajectories around libration points in the planar circular restricted three-
body problem. Traditional deterministic approaches have limitations in accounting for uncertain-
ties, requiring a two-step process involving Monte Carlo techniques for assessing the robustness
of the deterministic design. This might lead to suboptimal solutions and to a long and time-
consuming design process. Stochastic continuation methods, which extend numerical continua-
tion techniques to moments of probability density functions, offer a promising alternative. This
paper aims to pioneer the application of stochastic continuation procedures in mission analysis,
incorporating and acknowledging the stochastic nature of spacecraft missions from the early de-
sign phases. By extending existing frameworks to handle fixed points of stroboscopic or Poincaré
mappings, the study focuses on robustifying and enhancing trajectory design by considering un-
certainties in the determination of periodic orbits. The proposed approach has the potential to dis-
cover new solutions that may remain hidden in deterministic analyses, offering improved mission
design outcomes. Specifically, this work concentrates on the planar circular restricted three-body
problem, assuming uncertainties in both initial conditions and the mass ratio parameter. Stochas-
tic continuation is employed to identify equilibrium points and periodic orbits in this uncertain
dynamical system. The generalization of steady states and periodic orbits in uncertain environ-
ments is discussed, demonstrating the effectiveness of stochastic continuation in identifying safe
operational regions in uncertain astrodynamics problems.

1 INTRODUCTION

Since their discovery, orbits around libration points have been crucial for the design of challenging
missions to explore the Sun, the Moon, and other Solar System bodies. While Keplerian dynamics al-
lows us to find a closed-form solution to describe the motion of two bodies due to gravity, it, however,
fails to account for the gravitational attraction exerted by other surrounding bodies, and it is therefore
not possible to design complex orbits around equilibrium points in this dynamical model. Newton
was the first one to discuss the three-body problem, while Lagrange, about 50 years later, found
the existence of 5 equilibrium points in a rotating frame describing the circular restricted three-body
problem [1]. Other great mathematicians, including Euler and Poincaré, have studied this problem
and developed advanced mathematical tools to study interesting phenomena arising in these dynam-
ical systems, including stable and unstable manifolds, periodic orbits, quasi-periodic tori, etc [3].
Nowadays, dynamical systems theory (DST) is the de-facto standard for the qualitative investigation
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of these complex solutions and their time evolution. In the last 50 years, periodic orbits have been
found and flown in various three-body systems, and natural pathways leading up to those orbits with
minimal fuel have been successfully designed using DST techniques [9], [13]–[15], [17], [19], [20].
Numerical continuation techniques have been essential in finding and continuing these periodic and
quasi-periodic orbits in three-body environments [16], [24]. However, their application has always
been limited to deterministic systems, where it is assumed that the position of the spacecraft and the
dynamical model describing its motion are known with infinite accuracy. For this reason, mission
analysts typically use Monte Carlo techniques to explore different possible mission scenarios that
account for the uncertainties that they face, due to sensor errors, lack of knowledge, etc. This means
that the robustness of deterministic trajectories is only assessed a-posteriori and that the whole design
process is repeated in case the orbit is not found to be robust enough. While this two-step approach is
state-of-the-art, it is a time-consuming process that can potentially lead to sub-optimal trajectories.
Stochastic continuation methods are an emerging class of mathematical techniques that have demon-
strated successful results in extending numerical continuation techniques to moments of the proba-
bility density function (pdf) of uncertain quantities [26], [29]. This is usually done by calculating
fixed points of the corresponding ”moment map” of the pdf, which is a low-dimensional map that
describes the evolution of the first k moments of the uncertain distribution [22]. Since it is generally
not possible to explicitly compute the derivative of fixed points of the moment map, equations-free
Newton methods can be used to continue these quantities [21]. This means that the stochastic system
does not need to be expressed analytically, but one can simply evolve the system as a computer pro-
gram, drawing samples from the uncertain distributions and evolving ensembles of trajectories while
exploring the uncertainty set. By applying stochastic continuation methods, our aim is to pioneer the
application of novel mission analysis methods that include and account for uncertainties since the
early mission design phases. Our goal is to apply for the first time stochastic continuation procedures
in the context of mission analysis, thereby robustifying, easing, and enhancing the trajectory design
process, by incorporating and acknowledging the stochastic nature of spacecraft missions, from the
early design phases. In other fields, this has led to the discovery of new interesting solutions that could
not be found with the deterministic analysis [22]. While previous work on different fields focused on
moment maps of equilibrium points, we plan to extend this to periodic orbits, adapting and improving
existing frameworks to handle fixed points of stroboscopic or Poincaré mappings, where the evolu-
tion of the satellite is monitored through consecutive surface of section crossings. For this reason,
this work is organized as follows: we begin by introducing the relevant literature which covers the
dynamical model employed in this study (i.e., the PCR3BP) and the general framework for numerical
continuation. Subsequently, in Sec.3, we delve into the stochastic continuation framework, which
extends the application of numerical continuation to uncertain dynamical systems. Moving forward,
in Sec. 4 and 5, we introduce and discuss the application of stochastic continuation to continue steady
states (i.e., equilibrium points) and periodic orbits, in the uncertain PCR3BP scenario. Additionally,
we also present test cases to elaborate on the outcomes of employing this technique, which is novel in
astrodynamics. Finally, our work concludes in Sec. 6, where we summarize our findings and briefly
discuss future prospects.

2 BACKGROUND

2.1 Planar Circular Restricted Three-Body Problem (PCR3BP)

The circular restricted three-body problem (CR3BP) is defined as the problem of three-body when
the mass of the third body is negligible (and therefore considered massless) with respect to the two
primaries, and when the two primaries move in a circular orbit about the system’s barycenter (e.g. the
motion of a spacecraft in an orbit in the Earth-Moon system). A particular case of the CR3BP where
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the motion of the three bodies happens on a fixed plane is known as the planar circular restricted three-
body problem (PCR3BP). We call m1 and m2 the masses of the two primaries (i.e., P1, P2), while we
indicate as P3 the third massless body, and we normalize the distance by the distance L between P1

and P2 (this is also typically referred to as characteristic length), while the time is normalized by the
factor: T = (L3/G(m1 + m2)) (with G being the gravitational constant). Moreover, the mass ratio
parameter is defined as µ = m2/(m1 +m2), where m1 > m2 and µ ∈ [0, 1/2]. We define a rotating
frame, FR = (x̂xx, ŷyy), which is centered in the barycenter and whose x-axis lies in the P1-P2 line, and
whose xy-plane represents the same plane where P2 and P1 rotate about their barycenter, and where
the motion of P3 takes place. In this reference frame, P1 is located at [−µ, 0]T and P2 is located at
[(1 − µ), 0]T . Indicating with rrr = [x, y]T , the position vector of the third body in the rotating frame,
and with rrrij the vector that goes from the j th and ith body, we can write:

rrr31 = [x+ µ, y]

rrr32 = [x− (1− µ), y]

rrr21 = [1, 0].
(1)

The motion of the two larger masses is fully determined and assumed to be circular, while the mo-
tion of the third particle can be determined via the following set of 2nd-order ordinary differential
equations [25]:

ẍ− 2ẏ = −∂Ū

∂x

ÿ + 2ẋ = −∂Ū

∂y
,

(2)

where Ū is the augmented (or effective) potential:

Ū(x, y, z) = −1

2

(
(1− µ)r21 + µr22

)
− (1− µ)

r1
− µ

r2
, (3)

This set of equations of motion of the CR3BP is Hamiltonian and time-independent. It admits one
integral of motion (i.e., a quantity that is conserved through time) [2]. Usually, the celestial mechanics
and dynamical astronomy community uses the Jacobi integral, which is defined as:

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2)− 2Ū . (4)

2.2 Continuation Techniques

Many dynamical systems, including the CR3BP, that depend on one or more parameters can be stud-
ied via numerical continuation techniques. These techniques are particularly useful to understand the
qualitative changes that occur in the solutions of these systems when parameters are varied. An im-
portant application of numerical continuation techniques is the qualitative analysis of non-integrable
dynamics systems [3], which involves the study and characterization of equilibrium points (i.e., solu-
tions of the system where the state remains unchanged over time) and/or periodic orbits (i.e., solutions
where the system repeats its behavior after a certain period of time) w.r.t. parameters. The implicit
function theorem (IFT) is a central pillar behind numerical continuation techniques. It defines the
conditions under which families of periodic solutions exist and are unique [10]. This theorem can be
paraphrased as follows. Let GGG : Rn × Rm → Rn satisfy:

1. GGG(xxx0,aaa0) = 0, with xxx0 ∈ Rn and aaa0 ∈ Rm
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2. DGx(xxx0,aaa0) ∈ Rn ×Rn is nonsingular with bounded inverse (i.e., ||DGx(xxx0,aaa0)
−1|| < M , for

some M > 0);

3. GGG, DGx are Lipschitz continuous.

Then, there exists a locally unique branch of solutions (i.e., solution family, xxx(aaa)) [23].

2.2.1 Numerical Continuation

Having clarified the conditions under which the IFT holds, the numerical continuation framework can
be introduced. Assuming a one-dimensional parameter vector (i.e., aaa = a ∈ R), we look for zeros of
the vector function: GGG(xxx, a) : Rn×R → Rn, and we call a solution to this equation regular if the n×
(n+1) Jacobian matrix ofGGG w.r.t. xxx and a has a maximal rank, n [6]. Then, the IFT ensures that in the
neighborhood of this regular solution, a one-dimensional continuum of solutions (where the regular
solution belongs), called a solution branch, exists. In this setting, numerical continuation methods
refer to a collection of algorithms that utilize strategies to identify these solution curves: a popular
continuation algorithm that we also employ in this work is called pseudoarclength continuation.
Keller’s pseudoarclength continuation method was introduced to allow the solution branch to be con-
tinued past a fold and other degenerate cases [6], [7], [11], [12]. In particular, the idea of this continu-
ation method is to follow a solution branch in a path in the solution space, rather than using a sequence
of parameter values. By augmenting the system of equations with an additional equation, the fam-
ily branch is constrained to lie on a curve in the solution space. This pseudoarclength continuation
scheme is displayed in Fig. 1, where its prediction and correction steps are shown.

 
 

x 

a 

∆s 

Figure 1: Schematic illustration of pseudoarclength continuation procedure.

Supposing that we have found a regular solutionxxx0, a0, and its direction vector ẋ̇ẋx0, ȧ0, pseudoarclength
continuation augments the equations to be solved by one:{

GGG(xxx1, a1) = 0

(xxx1 − xxx0)
T ẋ̇ẋx0 + (a1 − a0)ȧ0 −∆s = 0

, (5)

where the idea is to parametrize the solution family as a function of the solution curve (i.e., xxx(s), a(s)),
where the family tangent of this solution curve can be written as: τττ = [dxxx/ds, da/ds] = [ẋxx, ȧ]. Since
we defined the curve as a solution curve, every point on it must satisfy GGG = 0. Hence, by writing the
Taylor expansion of GGG(xxx(s + ds), a(s + ds)), and leveraging the fact that GGG is zero on the solution
curve (i.e., G(xxx(s), a(s)) = G(xxx(s+ ds), a(s+ ds)) = 0), we can write:

DGx
dxxx

ds
+DGa

da

ds
= (DGx, DGa) · τττT = 0. (6)
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Finally, we write the points belonging to a plane perpendicular to the tangent vector at a distance
∆s = s− s0 from the current solution s0 as:

(xxx(s)− xxx(s0), a(s)− a(s0))
Tτττ = ∆s,

which represents the augmented equation in Eq. (5). Moreover, the Jacobian of the augmented equa-
tions can be written as:

J =

[
DGx DGa

τττ

]
, (7)

where from Eq. (6) we know that the tangent vector is orthogonal to the Jacobian of GGG. Hence, the
added equation is linearly independent from the previous set, by definition, therefore not making
the Jacobian singular. The tangent vector needs to be updated at each iteration, once convergence
is achieved. This can be done using a secant predictor, which consists of the use of the line that
intersects the last two found solutions as a family tangent. Then, the new family tangent vector can
be used to find the next initial guess for the Newton method, as:

xxx1 = xxx0 +∆s τ̃ττ , (8)

where τ̃ττ is the normalized family tangent vector. Finally, the initial guess can be utilized in a Newton-
method scheme to determine the root of GGG:

xxxk+1,1 = xxxk,1 −DG−1
x (xxxk,1)GGG(xxxk,1). (9)

The whole procedure can then be repeated, therefore allowing the exploration of the roots of GGG as a
function of xxx and aaa.
All these numerical continuation schemes work with the requirements that we can write an explicit
equation to find the roots of a function and the Jacobian of such function exists and can be computed
or approximated [26]. However, there are cases such as stochastic systems in which these equations
are not given explicitly. For continuing these systems, it is necessary to modify the numerical contin-
uation framework. This is done via Jacobian-free Newton-Krylov methods, such as GMRES, which
essentially enable the solution of the iterative scheme presented in Eq. 9, without direct access to the
Jacobian. In the following section, we introduce stochastic continuation, which is the framework that
allows to apply numerical continuation to stochastic systems.

3 STOCHASTIC CONTINUATION

Deterministic systems can be continued using standard numerical continuation techniques (e.g. pseu-
doarclength continuation), however, when there is the need to deal with uncertain dynamical systems,
it is necessary to account for the randomness in the system, due to either uncertainty in the initial con-
ditions, environment parameters, and/or the dynamics. For uncertain initial solutions or parameters,
an alternative that is often used is to initially treat the system as a deterministic one and only later
investigate deviations from that nominal behavior via Monte Carlo analysis. Whilst this method can
lead to acceptable results from an operational standpoint, it can give rise to suboptimal solutions, and
can also force one to repeat the deterministic design several times, before converging to a solution
that fulfills the constraints, therefore incurring in time losses.
In the last years, the problem of continuing dynamical systems in the presence of uncertainties has
been discussed, and a framework for continuing these systems affected by randomness has been
developed [29]. This approach has proven effective in various areas, including chemical reaction
models and other Hamiltonian systems [22], [29]. Its merit consists in successfully extending the
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results of numerical continuation techniques to macroscopic quantities that describe the uncertain
distribution. Usually, the operator used to compute these macroscopic quantities is the moment map:
this is a deterministic map that describes how the first k moments of the probability density function of
the state of a time-varying system evolve through time [22]. Some examples discussed in the literature
include the Ising model in two dimensions, a stochastic Swift-Hohenberg model, a one-dimensional
stochastic double-well potential, and a two-dimensional heath bath model, among others. These are
both partial differential equations and deterministic and stochastic differential equations, with either
uncertain or deterministic initial conditions. While these models represent interesting examples of
successful applications of stochastic continuation to various dynamical systems, they have only been
limited to equilibrium points (i.e., periodic orbits have not been continued) and to low-dimensional
systems (i.e., one or two-dimensional dynamical systems).
We assume to have a setup similar to the numerical continuation case, however, in this case, we must
distinguish between microscopic and macroscopic quantities. The former, are variables that describe
single realizations (i.e., trajectories) of the system, such as the position and velocity vector of a parti-
cle, while the latter are those that describe the macroscopic behavior of an ensemble of those particles.
Examples of macroscopic quantities are the moments of the distribution of the uncertain quantities,
such as the mean, the covariance, and higher-order moments. We assume to have a vector function
GGG(⟨xxx⟩, ⟨aaa⟩), whose zeros are sought, where ⟨xxx⟩ is the vector of macroscopic quantities (whose corre-
sponding microscopic quantities are referred to as xxx) and ⟨aaa⟩ is the vector of macroscopic parameters
(whose corresponding microscopic quantities are referred to as aaa). Furthermore, we use the curly
brackets (i.e., {xxx}ni=1, {aaa}ni=1) to indicate an ensemble of microscopic states.
Given a probability density function p of a vector of random variables xxx = [x1, .., xn], with xxx ∈ Rn,
the first k moments of the distribution about the mean can be defined using the expectation operator
as: 

m1 = [E[x1], . . . ,E[xn]]

m2,ij = E[(xi − E[xi])(xj − E[xj])], ∀i, j = 1, . . . n

. . .

mk,ij...l = E[(xi − E[xi])(xj − E[xj]) . . . (xl − E[xl])], ∀i, j, . . . , l = 1 . . . n

, (10)

where the expectation operator is given as the n-dimensional integral of the random variable multi-
plied by the probability density function:

E[xi] =

∫
Rn

xip(xxx)dxxx. (11)

Thus, the k-th moment of the distribution, mk, is a tensor of nk elements.
Our objective is to study the roots of a vector-valued function, GGG, defined as the difference between
the moments after a certain period T , and the moments at the initial time t0:

GGG =


m1(T )−m1(t0)

m2,ij(T )−m1(t0), ∀i, j = 1, . . . n
. . .

mk,ij...l(T )−mk,ij...l(t0), ∀i, j, . . . l = 1 . . . n

 , (12)

and continue them as a function of the parameters. If we had access to the function FFF that regulates
the evolution of the macroscopic quantities (e.g. the moments of the distribution), then we could
numerically integrate that function and perform numerical continuation on it. However, this is in
general not explicitly given, and one relies on the microscopic quantities to probe the behavior of the
macroscopic ones [18]. Usually, the relationship between microscopic and macroscopic quantities
is of statistical nature (e.g. in the case of the moments of the distribution). Therefore, there needs

ESA GNC-ICATT 2023 – Giacomo Acciarini 6



to be a procedure from a set of macroscopic quantities that generates the corresponding ensemble of
microscopic states, which are evolved at the desired time and then the resulting macroscopic quantities
are derived from the propagated ensembles. These three steps are known as lifting, evolving and
restricting steps, and are displayed in Fig. 2 [29].

     

evolving 

restricting lifting 

Figure 2: Illustration of lifting, evolving, and restricting operations, which allow computing how macroscopic
quantities evolve, without explicit access to the function FFF.

Once the microscopic quantities are evolved and restricted, one can finally compute the vector-valued
function GGG. In a numerical continuation scheme, Newton’s method is then applied to find the next
guess, until convergence. However, as already pointed out in Sec. 2.2, for the stochastic case, the
function whose zeros are sought is not known explicitly, which also makes the computation of the Ja-
cobian (i.e., DG) not possible analytically, in general. For this reason, to continue stochastic systems,
it is helpful to use Jacobian-free Newton-Krylov (JFNK). These are a class of methods that combine
Newton’s method and Krylov methods [4], to develop a class of algorithms that can apply Newton’s
algorithm for cases in which the Jacobian matrix of the map cannot be computed analytically [21].
In our case, this is essential because we will be working with moments of a distribution, whose Jaco-
bian is generally not known analytically. In particular, we leverage the generalized minimal residual
method (GMRES) to approximate the Jacobian-vector product, without directly having to form the
Jacobian [8]. In the following sections, we will discuss the first applications of stochastic continuation
in astrodynamics.

4 EQUILIBRIUM POINTS

By reformulating the equations of motion shown in Eq. (2) as a set of four first-order differential
equations:

ẋxx = fff(xxx, µ) =

[
ẋ, ẏ,−∂Ū

∂x
+ 2ẏ,−∂Ū

∂y
− 2ẋ

]T
, (13)

it can be seen that they admit five equilibrium points (i.e., xxx∗): that is, five points where fff(xxx∗, µ) = 000.
Moreover, the non-singularity of the Jacobian of fff at those five equilibrium points (i.e., ∇fff(xxx∗, µ))
underscores that a smooth family of solutions xxx∗(µ) exists over the entire domain µ ∈ [0, 0.5]. While
this problem is well understood and thoroughly discussed in the case in which the mass ratio pa-
rameter is deterministic, it has not been discussed what happens in an uncertain scenario where µ is
described by a probability density function. As a first simple application of stochastic continuation,
we formulate the problem for continuing stochastic equilibrium points, which are equilibrium points
of the same dynamical system, but assuming that the mass ratio parameter is now uncertain.
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Figure 3: Stochastic continuation of the five equilibrium points in the PCR3BP.

4.1 First Moment Stochastic Continuation of Equilibrium Points

Following the notation introduced in Sec. 3, the uncertain mass ratio parameter becomes a macro-
scopic quantity (i.e., ⟨µ⟩), whose microscopic counterparts can be derived by drawing samples from
its probability density function: µ ∼ p(µ). We are interested to find the zeros of the vector-valued
function defined as in Eq. (13), however, due to uncertainties in the mass ratio parameter, the vector-
valued function belongs to a probability density function, and we reduce the problem to the continua-
tion of its moment. In this case, we only continue the first moment of the distribution. By leveraging
the formulation expressed in Eq. (10), this corresponds to:

m1 = Eµ[fff(xxx, µ)] ≈
1

N

N∑
i=1

fff(xxx, {µ}i) = 0, (14)

Without direct access to the Jacobian of the expected value, which would require the computation of
the partial derivatives of the expected value w.r.t. the state and parameter, we draw samples from p(µ)
and we compute the average value of fff using a sample-based approach, then we use a Newton-Krylov
GMRES solver to approximate the Jacobian-vector product in order to setup a Newton method that
converges towards the stochastic equilibrium.
By using 100,000 samples with a uniform distribution for the mass ratio parameter (with +/-10% as
uncertain bounds), and by starting with the Earth-Moon mass ratio parameter, we use the determin-
istic equilibrium of the Earth-Moon system as initial guess, we use the GMRES method to converge
towards the stochastic equilibrium, and then continue the solutions as a function of the mass ratio pa-
rameter using pseudoarclength continuation (see Eq. (5)). In Fig. 3, we show the x-coordinate in the
rotating system of the equilibrium points in the stochastic (in orange) and deterministic (in blue) case
for all five equilibrium points, together with the error bars, which represent the lower and upper bound
of the uniform distribution that describes the uncertainty in the mass ratio parameter. As we observe,
in this case, the stochastic solution does not lead to the emergence of any particular new dynami-
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cal phenomena, but for this mass parameter probability density function, the stochastic equilibrium
points seem to closely follow their deterministic counterparts. In particular, we verified that the de-
terministic and stochastic equilibrium points do not have a significant difference in their position by
performing a t-test on the null hypothesis that there is no significant difference between the sample
mean and the real mean (where this latter was the equilibrium point of the deterministic system). This
was done by computing the mean equilibrium point several different times, with different seeds. The
difference in seeds affects the process of drawing samples from the distribution, thereby providing
slightly different values for the mean equilibrium points. We can collect these values for different
iterations (in our case ten) and compute their mean and standard deviation. Then, by establishing a
desired significance level (in our case 0.05) and by applying the t-statistic we could confirm that in
our case (for the uniform probability density function we used) we could reject the null hypothesis.

5 PERIODIC ORBITS

While equilibrium points constitute a natural starting point for any differential correction and contin-
uation procedure since they are fundamental concepts in the study of dynamical systems, on the other
hand, the mission designer is often interested in the design of periodic orbits. These are solutions that
repeat themselves after a certain time period, naturally creating a cyclic behavior, without the need for
any extra propellant. The aim of this section is to apply stochastic continuation techniques to the de-
sign of periodic orbits. We will first devote Sec. 5.1 and 5.2 to the introduction of Poincaré maps and
periodic orbits in the deterministic system, and then, in Sec. 5.3, we will generalize the application
of these concepts to uncertain dynamical systems, were we continue the first and second moments
of the distribution, demonstrating a new class of solutions that are robust against uncertainties in the
environmental parameters and/or initial conditions.

5.1 Surface of Section and Poincaré Maps

A common way to analyze the dynamics of the third body in the circular restricted three-body problem
is to discretize the system through the Poincaré map and to use surfaces of section to reduce the
dimensionality of the system [25]. A surface of section is a geometric surface in the phase space, that
is used to track the motion of the trajectories as they cross it. The simplest example of the surface of
section is some coordinate axis (e.g. y=0), but more generically, this is defined as: S(xxx) = 0.
To be well-defined, it is also required that the trajectory is non-tangent to the surface. Moreover, it is
typically required that the flow has some preferred direction of crossing, which can be enforced as:
∂S

∂xxx
· ẋ̇ẋx > 0.

It is also possible to remove another coordinate (therefore further reducing the dimensionality of the
system by one) using the integral of motion. Since we know that the Jacobi constant is conserved
during the motion, we can write: C(xxx(t0)) = C(xxx(t)) = C̄, and remove one of the other coordinates
to be integrated. This means that from the original n-dimensional state vector (i.e., xxx), we are left with
n − 2 reduced state (i.e., yyy), since two of the coordinates are imposed via S(xxx) = 0 and C(xxx) = C̄.
This reduced state is mapped (via a nonlinear function of the reduced state: ggg(yyy, C)) to the following
surfaces of section with equal Jacobi constant, via a discrete mapping, known as Poincaré map:

yyyi+1 = ggg(yyyi; C̄). (15)

This map was first introduced by Henri Poincaré [2], and it is extensively used in the computation of
periodic orbit, due to its main benefit of reducing the dimensionality of the system.
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5.2 Periodic Orbits in the Deterministic System

Defining ϕ as the flow of the dynamical system shown in Eq. (2), then if a periodic orbit exists, with
period T , it satisfies GGG(xxx0) = 0, where:

GGG(xxx0) = ϕ(T, t0; xxx0)− xxx0 = 0. (16)

These equations, together with Eq. (2), define a boundary value problem (BVP), whose solutions can
be found via a Newton procedure analogous to the one shown in Eq. (9) [27]. Assuming to start from
an initial guess for the vector xxx0, which we refer to as xxxk,0, we can expand via Taylor Eq. (16):

GGG(xxxk+1,0) = GGG(xxxk,0) +DG(xxxk,0)(xxxk+1,0 − xxxk,0) +HOT , (17)

where DF is the Jacobian of GGG w.r.t. the initial conditions and HOT indicate the higher order terms.
Ignoring the higher-order terms, rearranging the remaining terms, and inverting the expression in
Eq. (17), we can obtain an iterative scheme to find the next iterate, as a function of the previous
iterate:

xxxk+1,0 = xxxk,0 −DG−1(xxxk,0)GGG(xxxk,0). (18)

This can lead to convergence to a periodic orbit if the Jacobian is invertible and the initial guess is
close enough. However, in the CR3BP defined in Eq. (2) all the points along the periodic orbit still
satisfy the periodicity condition, and the system is also a Hamiltonian autonomous system, making
the periodic orbits organized in one parameter families [28]. These features introduce degeneracies in
the BVP, which make the problem ill-posed and not invertible. In order to avoid such degeneracies,
periodic orbits can also be found in the reduced system of four-dimensional coordinates, using the
Poincaré map defined in Eq. (15). In this setting, periodic orbits are formulated as fixed points of the
Poincaré map:

GGG(yyy0) = ggg(yyy0; C̄)− yyy0 = 0, (19)

whereyyy0 is the reduced state of the periodic orbit. In this case, the degeneracies are removed by adding
the surface of section and equal Jacobi constant constraints, thereby getting rid of the singularities
in the Jacobian computation. Therefore, one can start from an initial guess and setup a Newton
procedure to find the roots of Eq. (19) [9]. Finding periodic orbits involves the computation of the
Jacobian of the vector-valued function GGG. However, as already discussed in Sec. 3, this is generally
not directly accessible for stochastic systems. For these cases, as already pointed out for the first-
moment continuation case, we employ Newton-Krylov methods to approximate the Jacobian-vector
product.

5.3 Periodic Orbits in the Stochastic System

Using the same framework of the deterministic case shown in Sec. 5.2, in this case, we assume that
both xxx0 (i.e., initial conditions) and µ (i.e., the mass ratio parameter) are random variables (due to
uncertainties in initial conditions and parameters), which therefore have their associated probability
density functions that are defined as p(xxx0) and p(µ). As explained in Sec. 3, our objective is to
continue some macroscopic quantities ⟨xxx⟩. In particular, we want to find periodic solutions for the
macroscopic quantities, which can be defined as zeros of the following vector-valued function:

GGG(⟨xxx0⟩) = ⟨ϕT (xxx0, µ)⟩ − ⟨xxx0⟩. (20)

Where we use the operator ⟨.⟩ to indicate the moment map of the probability density function of the
random variables. As we have shown in Eq. (19), the periodic solutions can also be found as fixed
points of the Poincaré map. In this case, the system reduces to:

GGG(⟨yyy0⟩) = ⟨ggg(yyy0, µ; C̄)⟩ − ⟨yyy0⟩, (21)
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where C̄ refers to a given fixed value for the Jacobi constant. Due to the extra constraints added by the
surface of the section and the equal Jacobi, this latter formulation allows the removal of two equations
from the originally four-dimensional system.
Having formulated the vector-valued function whose zeros are sought as in Eq. (21), the stochastic
continuation framework in the context of the PCR3BP can be described by the following steps:

1. lifting step: samples are drawn from the probability density functions of both the state and the
parameters. We call these ensembles of samples as: {yyy0, µ}Ni=1, where N is the number of
chosen samples;

2. evolving step: for each of the initial states and mass ratio parameter, the final state is computed
by integrating the equations of motion of the PCR3BP and using the Poincaré map to reduce
the state to two dimensions;

3. restriction step: in a sample-based approach (i.e., where samples are drawn from the probability
density function and then propagated individually), it is necessary to compute the macroscopic
quantities from the ensemble of propagated trajectories. For instance, the expected value de-
fined in Eq. (11) can be approximated as:

E[yk(tf )] ≈
1

N

N∑
i=1

yk
(
{yyy0, µ}i

)
, (22)

where yk(tf ) is the k-th coordinate of the reduced state after being integrated up to time tf .
This leads to the following approximation for the second moment of the distribution:

E
[
(yk(tf )− E[yk(tf )])(yl(tf )− E[yl(tf )])

]
≈

≈ 1

N

N∑
i=1

[(
yk({yyy0, µ}i)−

1

N

N∑
i=1

yk
(
{yyy0, µ}i)

)(
yl({yyy0, µ}i)−

1

N

N∑
i=1

yl
(
{yyy0, µ}i)

)]
,

(23)

∀k, l = 1, . . . n. As N tends towards infinity, the Central Limit Theorem (CLT) ensures the
convergence of the sample mean (i.e., Eq.(22)) towards the analytically computed expected
value, provided that the underlying distribution has a bounded variance [5].

Having established the general setup of stochastic continuation for the PCR3BP, we proceeded to
perform numerical experiments to verify if such a procedure can work and lead to interesting results.
As already mentioned, we limit ourselves to a Poincaré section, which means that we anchor one of
the position coordinates to a fixed value, and we find one of the velocity coordinates by imposing a
fixed Jacobi constant value. This reduces our state to only one position and one velocity coordinate,
thereby leaving us with a two-dimensional reduced state (i.e., yyy = [x, ẋ]T ∈ R2). We assume that
both the initial conditions of the reduced state and the mass ratio parameter are uncertain and can be
described by two probability density functions, we assume that the reduced state can be described
by a two-dimensional Gaussian distribution (with mean ȳyy0 and covariance Σyyy0), while the mass ratio
parameter is described by a uniform distribution with +/-10% bounds w.r.t. to the mean mass ratio
parameter (i.e., µ̄). This can be written as: yyy0 ∼ N (ȳyy0,Σyyy0), µ ∼ U(µ̄− δµ, µ̄+ δµ).
Our objective is to continue both the first and second moments of the distribution. One possibility
would be to directly continue all the independent elements of the covariance matrix terms but this
would lead to a formulation that is ill-conditioned (e.g. a zero variance solution would always be a
solution of that system). For this reason, we parametrize the covariance matrix using the two axes

ESA GNC-ICATT 2023 – Giacomo Acciarini 11



of the ellipse (i.e., semi-major and semi-minor axis), which we call a, b, respectively, and the angle
between the x-axis and the semi-major axis, which we call θ: note that the area of the ellipse can be
found as πab. Then, we express the equations to be continued for the second-moment case as:

GGG(ȳyy0,Σyyy0) = GGG(ȳyy0, a0, b0) =


Eyyy0,µ[yyyf ]− ȳ̄ȳy0

af − a0

πafbf −K,
(24)

where we use the subscripts 0 and f to indicate the initial and final conditions (after a period), respec-
tively, and we use K to refer to the user-defined constant that regulates the area of the final covariance
ellipse. By finding the zeros of GGG, the goal is to find the initial normal distribution of the reduced
state that: a) guarantees that the trajectories return, on average, to the same region after one period
(i.e., the average of the final distribution has to match the average of the initial distribution, which is a
generalization of the periodicity condition for the first moment); b) the variance of these trajectories is
bounded and equal to K, and the semi-major axis of the covariance ellipse after one orbit is identical
to the initial semi-major axis.
We use the Distant Retrograde Orbit (DRO) family as an initial application of the second moment
continuation: our objective is to study what is the stochastic counterpart of this popular family of
deterministic periodic orbits in the stochastic case. In particular, within the DRO family, as an initial
guess for our stochastic continuation procedure, we choose an orbit that has an initial position vector
equal to rrrpo = [8.66968844 × 10−2, 0]T , an initial velocity vector equal to vvvpo = [1.41842539 ×
10−13, 4.26123697]T , and a period of Tpo = 6.296488, all in normalized units. The members of the
DRO family have a wide stability region around their periodic orbits, which is a desirable property
for many applications since limited perturbations around the initial state stay bounded.
We use 100,000 samples, and we choose as initial covariance an ellipse with the following values:
a = 0.03300155, b = 0.0002710345, θ = 1.59089363 rad. When propagating the set of initial
trajectories from these uncertain initial conditions and mass ration parameter, propagating over an
orbital period, one would obtain the distributions shown in Fig. 4a, where we show the Poincaré
section of the orbits of interest, and we highlight in blue three times the initial covariance ellipse and
in orange three times the covariance ellipse after one period.
Instead, the stochastic continuation approach enables us to find solutions that on average return to
the same region, and that fulfill the user-defined ellipse area and the same semi-major axis. As an
example, we show in Fig. 4c, the Poincaré section of a converged solution with stochastic continua-
tion. There, we display in blue the initial trajectories and three times their covariance, in orange the
trajectories after one orbit and three times their covariance, and in black, we also show three times
the covariance at each Poincaré section crossing, for a hundred periods. Owing to the DRO stability,
we can observe that these solutions preserve bounded covariances centered at the same point for a
very long period of time. Once a solution is found, we use the pseudoarclength continuation equation
discussed in Eq. (5) to continue the solution at a different period of the orbit. In this way, we are able
to extract the family of periodic orbits in the stochastic system. We show a subset of those orbits in
Fig. 4b, the ellipse represents the covariance matrix of the converged trajectory, while the center of
the ellipse is the converged mean. In the same figure, we also overlap the deterministic solution.
All these solutions have the same property of maintaining the average distribution at the same location
after one period, and of fulfilling the abovementioned requirements of the area and the semi-major
axis of the ellipse (without the need for any extra propellant). This goes in the direction of locating
safe operational regions in chaotic three-body environments with uncertainties. As we observe, these
solutions are different than their deterministic counterpart: this highlights that an initial deterministic
design with post-processed Monte Carlo analysis might lead to suboptimal solutions w.r.t. a pure
stochastic design, with consequent losses of time and costs (e.g. propellant).
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Figure 4

6 CONCLUSIONS

Numerical continuation techniques have been essential for the discovery of families of periodic orbits
in the CR3BP problem. Their use has allowed us to explore and better understand the chaotic envi-
ronment of the CR3BP. While very useful for theoretical studies, the reality of spacecraft missions
involves many uncertainties in the initial state of the spacecraft.
In our research, we present preliminary results on the utilization of first and second-moment con-
tinuation maps. Initially, we employed stochastic continuation to identify and continue equilibrium
points within the uncertain PCR3BP. This involved extending the continuation process to encompass
the first moments of the probability density function. Subsequently, we extended these techniques
to enable the continuation of periodic orbits, incorporating the second moments of the distribution
as well. By doing so, we were able to identify regions of safety wherein the spacecraft maintains
its operational constraints after one period, while also preserving an average position identical to its
initial state. This latter is a generalization of the periodicity condition (on average) for stochastic
systems. In these orbits, the spacecraft naturally remains within a bounded region without requiring
any additional control. Furthermore, we demonstrated that these orbits deviate from their nominal
deterministic counterparts, thus confirming that the current state-of-the-art approach, which involves
incorporating uncertainty retrospectively into the design, yields suboptimal solutions.
Although our preliminary findings show promise and indicate the potential for discovering and utiliz-
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ing a new class of solutions in practical scenarios that are robust against uncertainties, there are several
unresolved inquiries that we intend to address. Specifically, our future investigations will focus on
expanding the aforementioned techniques to encompass the CR3BP and extending them to three-
dimensional orbits, such as Halo orbits. Subsequently, we aim to apply the developed methodologies
to tackle real-world mission challenges.
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