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Motivation



Software Qualification Motivation

Software Qualification is an Art
• We have requirements and methods but then there is a culture and a

tradition of how to apply them.
• There are many myths about ECSS Cat-A software qualification and its

costs:
• Because of MC/DC
• Because of what needs to be done with the object code

• Over the years we have seen many errors and misconceptions.

Good News
• We believe we can help to debunk many of them!
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Misconceptions



MC/DC is Very Expensive Misconceptions

Relevant example: MC/DC necessary
bool func(bool a, bool b, bool c) {

bool result;

if (a && b || c)
result = switch_on();

else
result = switch_off();

return result;
}

MC/DC Implementation is Prohibitively Expensive
• License cost of proprietary tools
• Effort to increase the number of tests
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MC/DC is Very Expensive Misconceptions

Available open-source tools:

• GCC gcov is capable of MC/DC since GCC 14
• The gcovr tool also creates HTML reports for MC/DC
• GTD's mcdc-checker also enables older GCCs for MC/DC
• GTD's mcdc-checker helps to assess the extra effort to achieve MC/DC
• Clang/LLVM is also capable of MC/DC

6



MC/DC is Very Expensive Misconceptions

Flight SW is not always so dense in decisions:

The whole qualified RTEMS OS with over 20 kLoC would need about 160
additional tests.
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Object Code Coverage is Costly and Complex Misconceptions

Relevant example: Object Code Coverage necessary

int function_1 (int n) {
int total = 0;
for (int i = 0 ; i < n ; i++) {

total += i & n;
}
return total;

}
function_1

0x00000000:   orcc       %o0, 0, %g2
0x00000004:   ble        2c <function_1+0x2c>
0x00000008:   clr        %g1

NO JUMP JUMP

0x0000000c:   clr        %o0
NO JUMP

0x0000002c:   retl       
0x00000030:   clr        %o0! 0 <function_1>

RETURN targets: --

0x00000010:   and        %g2, %g1, %g3
0x00000014:   inc        %g1
0x00000018:   cmp        %g2, %g1
0x0000001c:   bne        10 <function_1+0x10>
0x00000020:   add        %o0, %g3, %o0

NO JUMP JUMP

0x00000024:   retl       
0x00000028:   nop        

RETURN targets: --

Object code coverage implementation is costly and complex
• License cost of proprietary tools
• Complex test set-up
• High additional test effort
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Assessment on empirical data shows otherwise
• Open-source tools can be used to cover most needs
• Detailed assessment shows gaps as low as 0.48%1 on Cat-B SW (LibmCS)

1The percentage refers to Basic Blocks in object code.
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Coverage on Object Code Coverage Better than on Source Misconceptions

Relevant example: Source code based testing necessary
uint16_t filter_sensor(uint16_t raw, uint16_t prev, uint8_t alpha)
{

int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t c = (d * alpha) >> 8; // arithmetic + bitwise shift
uint16_t out = prev + c; // filtered output
return out;

}

Object code coverage can replace source code coverage
• If object code coverage is complete, every instruction has been exercised.
• Then, source code level unit testing will have no added value.
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Both are complementary and necessary
• DO-178 CAST-17 clarifies that this assumption is wrong.
• Object and source code coverage are complementary.
• MC/DC and logic/arithmetic error detection potential is lost if only object

code coverage is assessed.
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Source Coverage Analysis on Optimized Compilation Misconceptions

Source Code Coverage Analysis Must Use Optimized Cross-Compilations
• The mantra says: Test what you fly, fly what you test.
• This includes the optimization flag -O2 for unit test execution.
• gcov does not work well with optimized compilations thus, gcov is

problematic to use.
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Source Coverage Analysis on Optimized Compilation Misconceptions

Source code coverage assessment is done on source code
• Compiling with optimization and for coverage is nonsense:

→ Coverage instrumentation impedes optimization and optimization renders
coverage instrumentation useless.

• First assess structural coverage of a test set:
→ Compile with -O0 and for coverage, then execute the tests

• Later execute unit tests to check pass/fail criteria:
→ Compile with -O2 without coverage then execute the tests again
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Validation Tests Are More Valuable than Unit Tests Misconceptions

Unit tests have limited value compared to higher-level testing
• Only validation tests test the real integrated flight software.
• If I already validated my software with validation tests, why do I need to still

add unit tests just for the sake of coverage?
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Validation Tests Are More Valuable than Unit Tests Misconceptions

Unit tests give early and detailed defect information
• Unit tests enable early and detailed defect detection. This costs more on

validation tests.
• Validation tests, when used to assess coverage, produce a lot of incidental

coverage.
• Yields very positive coverage values
• The covered code has been exercised but its behavior not verified.
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New Challenges with AI



AI Produced Autocoding Adds New Challenges New Challenges with AI

• FSW engineering is a bit like the Peanut
Butter Jelly Sandwich game

• This is even more valid for Cat-A flight
software

• The computer needs exact instructions
• Natural language is inherently inexact and

ambiguous
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AI Produced Autocoding Adds New Challenges New Challenges with AI

Requirements Design Coding Compilation

• SW engineering consists in pressing out the ambiguity
• We get the exact instructions for the computer as output
• The verification process ensures every step is done correctly

Risk of AI Autocoding
• AI Autocoding cannot be used to jump over the complete design process.
• What you win in coding speed you loose in additional verification.
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AI Produced Autocoding Adds New Challenges New Challenges with AI

• AI autocoding is BSHa generation per se
• Generated code is at best only one valid

instance of the very large set of programs
that comply with an ambiguous prompt.

• Very high pressure on verification to
understand what the generated software
does.

• Category A process is all about
understanding exactly what we fly.

aBSH: Bullshit, to be understood in its Frankfurtian sense; On Bullshit, Harry Frankfurt,
1986
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Conclusions



Conclusions Conclusions

Good News
• Not necessarily so difficult nor expensive:

→ open source tools, often less work than assumed
• Many of the points also healthy for lower criticality software
• All explained aspects are valid across different target processors, operating

systems, cross-compiler toolchains, and programming languages.

Challenges
• More → Faster → Cheaper → Crash:

→ Newspace awareness of software product assurance
• AI cannot replace software engineering processes.
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