
Common Misconceptions in
ECSS Cat-A Flight SW Qualification
ESA SW Product Assurance Conference

Andoni Arregi
2025-09-25, ESTEC

Content

1. Motivation

2. Misconceptions

3. New Challenges with AI

4. Conclusions

1

Thanks

This work is the result of a long collaboration with ESA. We want to explicitly
thank:

• Andreas Jung
• Cristina Almaraz
• Isabelle Conway

2

Motivation

Software Qualification Motivation

Software Qualification is an Art
• We have requirements and methods but then there is a culture and a

tradition of how to apply them.
• There are many myths about ECSS Cat-A software qualification and its

costs:
• Because of MC/DC
• Because of what needs to be done with the object code

• Over the years we have seen many errors and misconceptions.

Good News
• We believe we can help to debunk many of them!

3

Software Qualification Motivation

Software Qualification is an Art
• We have requirements and methods but then there is a culture and a

tradition of how to apply them.
• There are many myths about ECSS Cat-A software qualification and its

costs:
• Because of MC/DC
• Because of what needs to be done with the object code

• Over the years we have seen many errors and misconceptions.

Good News
• We believe we can help to debunk many of them!

3

Misconceptions

MC/DC is Very Expensive Misconceptions

Relevant example: MC/DC necessary
bool func(bool a, bool b, bool c) {

bool result;

if (a && b || c)
result = switch_on();

else
result = switch_off();

return result;
}

MC/DC Implementation is Prohibitively Expensive
• License cost of proprietary tools
• Effort to increase the number of tests

4

MC/DC is Very Expensive Misconceptions

Relevant example: MC/DC necessary
bool func(bool a, bool b, bool c) {

bool result;

if (a && b || c)
result = switch_on();

else
result = switch_off();

return result;
}

MC/DC Implementation is Prohibitively Expensive
• License cost of proprietary tools
• Effort to increase the number of tests

4

MC/DC is Very Expensive Misconceptions

Relevant example: MC/DC necessary
bool func(bool a, bool b, bool c) {

bool result;

if (a && b || c)
result = switch_on();
else
result = switch_off();
return result;

}

Open-source tooling reduces the costs
• Available Open-Source tools eliminate the license cost
• Integration in CI pipelines ensures the tests are added continuously
• On average only one additional test for every complex decision

5

MC/DC is Very Expensive Misconceptions

Relevant example: MC/DC necessary
bool func(bool a, bool b, bool c) {

bool result;

if (a && b || c)
result = switch_on();
else
result = switch_off();
return result;

}

Open-source tooling reduces the costs
• Available Open-Source tools eliminate the license cost
• Integration in CI pipelines ensures the tests are added continuously
• On average only one additional test for every complex decision

5

MC/DC is Very Expensive Misconceptions

Available open-source tools:

• GCC gcov is capable of MC/DC since GCC 14
• The gcovr tool also creates HTML reports for MC/DC
• GTD's mcdc-checker also enables older GCCs for MC/DC
• GTD's mcdc-checker helps to assess the extra effort to achieve MC/DC
• Clang/LLVM is also capable of MC/DC

6

MC/DC is Very Expensive Misconceptions

Flight SW is not always so dense in decisions:

The whole qualified RTEMS OS with over 20 kLoC would need about 160
additional tests.

7

MC/DC is Very Expensive Misconceptions

Flight SW is not always so dense in decisions:

The whole qualified RTEMS OS with over 20 kLoC would need about 160
additional tests.

7

Object Code Coverage is Costly and Complex Misconceptions

Relevant example: Object Code Coverage necessary

int function_1 (int n) {
int total = 0;
for (int i = 0 ; i < n ; i++) {

total += i & n;
}
return total;

}
function_1

0x00000000: orcc %o0, 0, %g2
0x00000004: ble 2c <function_1+0x2c>
0x00000008: clr %g1

NO JUMP JUMP

0x0000000c: clr %o0
NO JUMP

0x0000002c: retl
0x00000030: clr %o0! 0 <function_1>

RETURN targets: --

0x00000010: and %g2, %g1, %g3
0x00000014: inc %g1
0x00000018: cmp %g2, %g1
0x0000001c: bne 10 <function_1+0x10>
0x00000020: add %o0, %g3, %o0

NO JUMP JUMP

0x00000024: retl
0x00000028: nop

RETURN targets: --

Object code coverage implementation is costly and complex
• License cost of proprietary tools
• Complex test set-up
• High additional test effort

8

Object Code Coverage is Costly and Complex Misconceptions

Relevant example: Object Code Coverage necessary

int function_1 (int n) {
int total = 0;
for (int i = 0 ; i < n ; i++) {

total += i & n;
}
return total;

}
function_1

0x00000000: orcc %o0, 0, %g2
0x00000004: ble 2c <function_1+0x2c>
0x00000008: clr %g1

NO JUMP JUMP

0x0000000c: clr %o0
NO JUMP

0x0000002c: retl
0x00000030: clr %o0! 0 <function_1>

RETURN targets: --

0x00000010: and %g2, %g1, %g3
0x00000014: inc %g1
0x00000018: cmp %g2, %g1
0x0000001c: bne 10 <function_1+0x10>
0x00000020: add %o0, %g3, %o0

NO JUMP JUMP

0x00000024: retl
0x00000028: nop

RETURN targets: --

Object code coverage implementation is costly and complex
• License cost of proprietary tools
• Complex test set-up
• High additional test effort

8

Object Code Coverage is Costly and Complex Misconceptions

Relevant example: Object Code Coverage necessary

int function_1 (int n) {
int total = 0;
for (int i = 0 ; i < n ; i++) {

total += i & n;
}
return total;

}
function_1

0x00000000: orcc %o0, 0, %g2
0x00000004: ble 2c <function_1+0x2c>
0x00000008: clr %g1

NO JUMP JUMP

0x0000000c: clr %o0
NO JUMP

0x0000002c: retl
0x00000030: clr %o0! 0 <function_1>

RETURN targets: --

0x00000010: and %g2, %g1, %g3
0x00000014: inc %g1
0x00000018: cmp %g2, %g1
0x0000001c: bne 10 <function_1+0x10>
0x00000020: add %o0, %g3, %o0

NO JUMP JUMP

0x00000024: retl
0x00000028: nop

RETURN targets: --

Assessment on empirical data shows otherwise
• Open-source tools can be used to cover most needs
• Detailed assessment shows gaps as low as 0.48%1 on Cat-B SW (LibmCS)

1The percentage refers to Basic Blocks in object code.

9

Object Code Coverage is Costly and Complex Misconceptions

Relevant example: Object Code Coverage necessary

int function_1 (int n) {
int total = 0;
for (int i = 0 ; i < n ; i++) {

total += i & n;
}
return total;

}
function_1

0x00000000: orcc %o0, 0, %g2
0x00000004: ble 2c <function_1+0x2c>
0x00000008: clr %g1

NO JUMP JUMP

0x0000000c: clr %o0
NO JUMP

0x0000002c: retl
0x00000030: clr %o0! 0 <function_1>

RETURN targets: --

0x00000010: and %g2, %g1, %g3
0x00000014: inc %g1
0x00000018: cmp %g2, %g1
0x0000001c: bne 10 <function_1+0x10>
0x00000020: add %o0, %g3, %o0

NO JUMP JUMP

0x00000024: retl
0x00000028: nop

RETURN targets: --

Assessment on empirical data shows otherwise
• Open-source tools can be used to cover most needs
• Detailed assessment shows gaps as low as 0.48%1 on Cat-B SW (LibmCS)

1The percentage refers to Basic Blocks in object code.

9

Coverage on Object Code Coverage Better than on Source Misconceptions

Relevant example: Source code based testing necessary
uint16_t filter_sensor(uint16_t raw, uint16_t prev, uint8_t alpha)
{

int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t c = (d * alpha) >> 8; // arithmetic + bitwise shift
uint16_t out = prev + c; // filtered output
return out;

}

Object code coverage can replace source code coverage
• If object code coverage is complete, every instruction has been exercised.
• Then, source code level unit testing will have no added value.

10

Coverage on Object Code Coverage Better than on Source Misconceptions

Relevant example: Source code based testing necessary
uint16_t filter_sensor(uint16_t raw, uint16_t prev, uint8_t alpha)
{

int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t c = (d * alpha) >> 8; // arithmetic + bitwise shift
uint16_t out = prev + c; // filtered output
return out;

}

Object code coverage can replace source code coverage
• If object code coverage is complete, every instruction has been exercised.
• Then, source code level unit testing will have no added value.

10

Coverage on Object Code Coverage Better than on Source Misconceptions

Relevant example: Source code based testing necessary
uint16_t filter_sensor(uint16_t raw, uint16_t prev, uint8_t alpha)
{

int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t c = (d * alpha) >> 8; // arithmetic + bitwise shift
uint16_t out = prev + c; // filtered output
return out;

}

Both are complementary and necessary
• DO-178 CAST-17 clarifies that this assumption is wrong.
• Object and source code coverage are complementary.
• MC/DC and logic/arithmetic error detection potential is lost if only object

code coverage is assessed.

11

Coverage on Object Code Coverage Better than on Source Misconceptions

Relevant example: Source code based testing necessary
uint16_t filter_sensor(uint16_t raw, uint16_t prev, uint8_t alpha)
{

int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t c = (d * alpha) >> 8; // arithmetic + bitwise shift
uint16_t out = prev + c; // filtered output
return out;

}

Both are complementary and necessary
• DO-178 CAST-17 clarifies that this assumption is wrong.
• Object and source code coverage are complementary.
• MC/DC and logic/arithmetic error detection potential is lost if only object

code coverage is assessed.

11

Source Coverage Analysis on Optimized Compilation Misconceptions

Source Code Coverage Analysis Must Use Optimized Cross-Compilations
• The mantra says: Test what you fly, fly what you test.
• This includes the optimization flag -O2 for unit test execution.
• gcov does not work well with optimized compilations thus, gcov is

problematic to use.

12

Source Coverage Analysis on Optimized Compilation Misconceptions

Source code coverage assessment is done on source code
• Compiling with optimization and for coverage is nonsense:

→ Coverage instrumentation impedes optimization and optimization renders
coverage instrumentation useless.

• First assess structural coverage of a test set:
→ Compile with -O0 and for coverage, then execute the tests

• Later execute unit tests to check pass/fail criteria:
→ Compile with -O2 without coverage then execute the tests again

13

Validation Tests Are More Valuable than Unit Tests Misconceptions

Unit tests have limited value compared to higher-level testing
• Only validation tests test the real integrated flight software.
• If I already validated my software with validation tests, why do I need to still

add unit tests just for the sake of coverage?

14

Validation Tests Are More Valuable than Unit Tests Misconceptions

Unit tests give early and detailed defect information
• Unit tests enable early and detailed defect detection. This costs more on

validation tests.
• Validation tests, when used to assess coverage, produce a lot of incidental

coverage.
• Yields very positive coverage values
• The covered code has been exercised but its behavior not verified.

15

New Challenges with AI

AI Produced Autocoding Adds New Challenges New Challenges with AI

• FSW engineering is a bit like the Peanut
Butter Jelly Sandwich game

• This is even more valid for Cat-A flight
software

• The computer needs exact instructions
• Natural language is inherently inexact and

ambiguous

16

AI Produced Autocoding Adds New Challenges New Challenges with AI

Requirements Design Coding Compilation

• SW engineering consists in pressing out the ambiguity
• We get the exact instructions for the computer as output
• The verification process ensures every step is done correctly

Risk of AI Autocoding
• AI Autocoding cannot be used to jump over the complete design process.
• What you win in coding speed you loose in additional verification.

17

AI Produced Autocoding Adds New Challenges New Challenges with AI

• AI autocoding is BSHa generation per se
• Generated code is at best only one valid

instance of the very large set of programs
that comply with an ambiguous prompt.

• Very high pressure on verification to
understand what the generated software
does.

• Category A process is all about
understanding exactly what we fly.

aBSH: Bullshit, to be understood in its Frankfurtian sense; On Bullshit, Harry Frankfurt,
1986

18

Conclusions

Conclusions Conclusions

Good News
• Not necessarily so difficult nor expensive:

→ open source tools, often less work than assumed
• Many of the points also healthy for lower criticality software
• All explained aspects are valid across different target processors, operating

systems, cross-compiler toolchains, and programming languages.

Challenges
• More → Faster → Cheaper → Crash:

→ Newspace awareness of software product assurance
• AI cannot replace software engineering processes.

19

	Motivation
	Misconceptions
	New Challenges with AI
	Conclusions

