Common Misconceptions in
ECSS Cat-A Flight SW Qualification

ESA SW Product Assurance Conference

Andoni Arregi
2025-09-25, ESTEC

1. Motivation

2. Misconceptions
3. New Challenges with Al

4. Conclusions

This work is the result of a long collaboration with ESA. We want to explicitly
thank:

- Andreas Jung
- Cristina Almaraz

- Isabelle Conway

Motivation

Software Qualification Motivation

Software Qualification is an Art

- We have requirements and methods but then there is a culture and a
tradition of how to apply them.
- There are many myths about ECSS Cat-A software qualification and its
costs:
- Because of MC/DC
- Because of what needs to be done with the object code
- Over the years we have seen many errors and misconceptions.

Software Qualification Motivation

Software Qualification is an Art
- We have requirements and methods but then there is a culture and a
tradition of how to apply them.

- There are many myths about ECSS Cat-A software qualification and its
costs:

- Because of MC/DC
- Because of what needs to be done with the object code
- Over the years we have seen many errors and misconceptions.

We believe we can help to debunk many of them!

Misconceptions

Misconceptions

MC/DC is Very Expensive

bool func(bool a, bool b, bool c) {
bool result;

if (a &8 b || c)
result = switch_on();

else
result = switch_off();

return result;

Misconceptions

MC/DC is Very Expensive

bool func(bool a, bool b, bool c) {
bool result;

if (a &8 b || c)
result = switch_on();

else
result = switch_off();

return result;

MC/DC Implementation is Prohibitively Expensive

- License cost of proprietary tools
- Effort to increase the number of tests

MC/DCis VEI’\/ Expensive Misconceptions

bool func(bool a, bool b, bool c) {
bool result;

if (a & b ||)
result = switch_on();
else

result = switch_off();
return result;

MC/DCis VEI’\/ Expensive Misconceptions

bool func(bool a, bool b, bool c) {
bool result;

if (a & b ||)
result = switch_on();
else

result = switch_off();
return result;

Available Open-Source tools eliminate the license cost
Integration in Cl pipelines ensures the tests are added continuously
On average only one additional test for every complex decision

MC/DCis VEI’\/ Expensive Misconceptions

Available open-source tools:

- GCC gcov is capable of MC/DC since GCC 14

- The gcovr tool also creates HTML reports for MC/DC

- GTD's mcdc-checker also enables older GCCs for MC/DC

- GTD's mcdc-checker helps to assess the extra effort to achieve MC/DC
- Clang/LLVM is also capable of MC/DC

MC/DCis VEI’\/ Expensive Misconceptions

Flight SW is not always so dense in decisions:

180 160 140 120 100 80 60
I I I | I 0

20

60 RTEMS SMP qual-only vk
® RTEMS SMP gual-only v6
80 libmes
Equip. Application SW
100 Equip. Boot SW
® Payload SW
120
— ‘ 140

—— 160

LOCs per additional test

LOC per complex decision

MC/DCis VEI’\/ Expensive Misconceptions

Flight SW is not always so dense in decisions:

180 160 140 120 100 80 60
1 1 1 Il 1 0
20
+ —+40
g
z 60 RTEMS SMP qual-onily v
Z ® RTEMS SMP qual-only v6
.‘ﬁ 80 libmes
5 Equip. Application SW
g 100 Equip. Boot SW
= ® Payload SW
120
- ‘ ”
L 160

LOC per complex decision

The whole qualified RTEMS OS with over 20 kLoC would need about 160
additional tests.

Object Code Coverage is Costly and Complex Misconceptions

int function_1 (int n) {
int total = 0;
for (int 1 =0 ; i < n ; i++) {
total += 1 & n;
}

return total;

Object Code Coverage is Costly and Complex Misconceptions

int function_1 (int n) {
int total = 0;
for (int 1 =0 ; i < n ; i++) {
total += 1 & n;
}

return total;

License cost of proprietary tools
Complex test set-up
High additional test effort

Object Code Coverage is Costly and Complex

int function_1 (int n) {
int total = 0;
for (int 1 =0 ; i < n
total += 1 & n;
}

return total;

1The percentage refers to Basic Blocks in object code.

; i++) o

Object Code Coverage is Costly and Complex Misconceptions

int function_1 (int n) {
int total = 0;
for (int i = 0 ; 1 < n ; i++) {
total += 1 & n;
}

return total;

Open-source tools can be used to cover most needs
Detailed assessment shows gaps as low as 0.48%' on Cat-B SW (LibmCS)

1The percentage refers to Basic Blocks in object code.

Coverage on Object Code Coverage Better than on Source Mmisconceptions

uint16_t filter_sensor(uintl6_t raw, uintl6_t prev, uint8_t alpha)

{

int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t ¢ = (d * alpha) >> 8; // arithmetic + bitwise shift
uintl16_t out = prev + c; // filtered output

return out;

10

Coverage on Object Code Coverage Better than on Source Mmisconceptions

uint16_t filter_sensor(uintl6_t raw, uintl6_t prev, uint8_t alpha)

{
int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t ¢ = (d * alpha) >> 8; // arithmetic + bitwise shift
uintl16_t out = prev + c; // filtered output
return out;

}

Object code coverage can replace source code coverage
- If object code coverage is complete, every instruction has been exercised.
- Then, source code level unit testing will have no added value.

10

Coverage on Object Code Coverage Better than on Source Mmisconceptions

uintl6_t filter_sensor(uintl6_t raw, uintl6_t prev, uint8_t alpha)

{
int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t ¢ = (d * alpha) >> 8; // arithmetic + bitwise shift
uintl6_t out = prev + c; // filtered output
return out;

}

Coverage on Object Code Coverage Better than on Source Mmisconceptions

uintl6_t filter_sensor(uintl6_t raw, uintl6_t prev, uint8_t alpha)

{
int32_t d = (int32_t)raw - (int32_t)prev; // arithmetic: difference
int32_t ¢ = (d * alpha) >> 8; // arithmetic + bitwise shift
uintl6_t out = prev + c; // filtered output
return out;

}

DO-178 CAST-17 clarifies that this assumption is wrong.

Object and source code coverage are complementary.

MC/DC and logic/arithmetic error detection potential is lost if only object
code coverage is assessed.

Source Coverage Analysis on Optimized Compilation Misconceptions

Source Code Coverage Analysis Must Use Optimized Cross-Compilations
- The mantra says: Test what you fly, fly what you test.
- This includes the optimization flag -02 for unit test execution.
- gcov does not work well with optimized compilations thus, gcov is
problematic to use.

12

Source Coverage Analysis on Optimized Compilation Misconceptions

Compiling with optimization and for coverage is nonsense:
— Coverage instrumentation impedes optimization and optimization renders
coverage instrumentation useless.
First assess structural coverage of a test set:
— Compile with -00 and for coverage, then execute the tests
Later execute unit tests to check pass/fail criteria:

— Compile with -02 without coverage then execute the tests again

13

Validation Tests Are More Valuable than Unit Tests Misconceptions

Unit tests have limited value compared to higher-level testing
- Only validation tests test the real integrated flight software.
- If I already validated my software with validation tests, why do | need to still
add unit tests just for the sake of coverage?

Validation Tests Are More Valuable than Unit Tests Misconceptions

Unit tests enable early and detailed defect detection. This costs more on

validation tests.
Validation tests, when used to assess coverage, produce a lot of incidental

coverage.
Yields very positive coverage values
The covered code has been exercised but its behavior not verified.

15

New Challenges with Al

Al Produced Autocoding Adds New Challenges New Challenges with Al

- FSW engineering is a bit like the Peanut
Butter Jelly Sandwich game

- This is even more valid for Cat-A flight
software

- The computer needs exact instructions

- Natural language is inherently inexact and
ambiguous

16

Al Produced Autocoding Adds New Challenges New Challenges with Al

- SW engineering consists in pressing out the ambiguity
- We get the exact instructions for the computer as output
- The verification process ensures every step is done correctly
Risk of Al Autocoding
- Al Autocoding cannot be used to jump over the complete design process.
- What you win in coding speed you loose in additional verification.

17

Al Produced Autocoding Adds New Challenges New Challenges with Al

- Al autocoding is BSH? generation per se

- Generated code is at best only one valid
instance of the very large set of programs
that comply with an ambiguous prompt.

- Very high pressure on verification to
understand what the generated software
does.

- Category A process is all about
understanding exactly what we fly.

9BSH: Bullshit, to be understood in its Frankfurtian sense; On Bullshit, Harry Frankfurt,
1986

18

Conclusions

Conclusions Conclusions

Not necessarily so difficult nor expensive:
— open source tools, often less work than assumed
Many of the points also healthy for lower criticality software
All explained aspects are valid across different target processors, operating
systems, cross-compiler toolchains, and programming languages.

Challenges

- More — Faster — Cheaper — Crash:
— Newspace awareness of software product assurance
- Al cannot replace software engineering processes.

	Motivation
	Misconceptions
	New Challenges with AI
	Conclusions

