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Modeling asteroid ocean impacts using multi-physics hydrocode
Values based on PDC 2023 hypothetical impact exercise epoch 1

= Impact of near earth objects (NEOs) are low probability high consequence hazards.
The initial impact can have a variety of secondary hazards that are dependent on
geographical location.

= We focus this work on water impacts with special interest on tsunami wave
generation/propagation and atmospheric affects

Asteroid diameter 600 m
Asteroid density 2.12 g/cm?3
Asteroid porosity 20%
Asteroid velocity 12.67 km/s
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Multi-physics hydrocode (ALE3D)

Arbitrary Lagrangian-Eulerian scheme
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= Asteroid impact and crater formation

— Initial mesh element size: 5—15m

= Material details:

— Livermore Equation Of State (LEOS) data
tables used to determine thermodynamic
properties of air, water, and earth

— Granite asteroid uses GEODYN material
model

= Adaptive mesh refinement (AMR)
applied to the area around the asteroid
and material interfaces
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Multi-physics hydrocode (ALE3D)

Arbitrary Lagrangian-Eulerian scheme

23 I(}adlally Symmetric Domain = Asteroid impact and crater formation
Maf\cx;:ii ) — Initial mesh element size: 5—-15m
ﬁ_steriod
RN l(: air = Material details:
\ \ — Livermore Equation Of State (LEOS) data
tables used to determine thermodynamic
0 .

properties of air, water, and earth
— Granite asteroid uses GEODYN material
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Pipeline for consequence calculations
Linking high-fidelity hydrocode to atmospheric and tsunami models

Multi-physics hydrocode
(ALE3D) Weather Research &

- Arbitrary Lagrangian-Eulerian Forecasting (WRF) model

(ALE) scheme e Ax=1km,At=2-65

* Ax=5-50m,At=10°-10"s [}« |ncludes cloud microphysics

« Crater formation, vaporization,
conversion to wave energy, and
asteroid pulverization

Boussinesq solver

e Ax=100m, At=0.5 s
'h--A I_E D * Tsunami propagation and

dispersion

Computational Fluid
Dynamics (CFD) model

* |nundation of coastal areas and
forces on structures
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Pipeline for consequence calculations
Linking high-fidelity hydrocode to atmospheric and tsunami models

Multi-physics hydrocode
(ALE3D)
» Arbitrary Lagrangian-Eulerian
(ALE) scheme
Ax=5-50m, At=10°%-10"%s
« Crater formation, vaporization,

conversion to wave energy, and
asteroid pulverization

EALE3D
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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= Simulation starts with asteroid just
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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= Simulation starts with asteroid just
above water

= Asteroid impact causes shock wave
formation, water vaporizes into steam
and liquid water creates crater rim

Depth (km)
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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= Simulation starts with asteroid just
above water

= Asteroid impact causes shock wave
formation, water vaporizes into steam
and liquid water creates crater rim
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Crater formation and vaporization
Asteroid: 600-m diameter, traveling normal to the earth’s surface at 12.67 km/s
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Hot vapor plume moves up into atmosphere
Linking necessary for modeling cloud formation atmosphere effects on longer time scale
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Impact in shallow water deforms and vaporizes seafloor
Changing vapor to include steam and dust
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Pipeline for consequence calculations
Linking high-fidelity hydrocode to atmospheric and tsunami models

Weather Research &
Forecasting (WRF) model

e Ax=1km,At=2-65s
* Includes cloud microphysics
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Future linking to Weather Research & Forecasting (WRF) model

Modeling workflow potential and future direction

= Model applies historic atmospheric

meteorology data of real cloud coverage
— Near South Africa, south of Madagascar

— 9:00 am local time on June 3, 2022 m— p——— —
-:Z::): :0.003 -375
= Simulated change in temperature shows | -~ oo | 3 I
— Atmospheric gravity waves ey Bl 7 I,

— Cooling due to cloud formation at late time
'Temperature

= Results give insight into post-impact vertical slice

weather and potential global radiative
effects

Ocean
Surface

Simulation Initial Condition
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Pipeline for consequence calculations
Linking high-fidelity hydrocode to atmospheric and tsunami models

Boussinesq solver

e Ax=100m, At=0.5 s
* Tsunami propagation and
dispersion
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Pressure difference causes seafloor rebound
Damped oscillation and crater infill creates the initial tsunami wave train
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Pressure difference causes seafloor rebound
Damped oscillation and crater infill creates the initial tsunami wave train
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Complex nature of seafloor rebound and tsunami generation

Tsunami waves generate and propagate while seafloor is continuing to deform
Tsunami wavelength within deep-water limit dispersion will occur

Sea surface height
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~ Water initial depth Hy = 3 km
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400 > 3500 = -4
-6
300 — - - - -
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Complex nature of seafloor rebound and tsunami generation

Tsunami waves generate and propagate while seafloor is continuing to deform
Tsunami wavelength within deep-water limit dispersion will occur

Sea surface height
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Pipeline for consequence calculations
Linking high-fidelity hydrocode to atmospheric and tsunami models

Multi-physics hydrocode
(ALE3D) Weather Research &

- Arbitrary Lagrangian-Eulerian Forecasting (WRF) model

(ALE) scheme e Ax=1km,At=2-65

* Ax=5-50m,At=10°-10"s [}« |ncludes cloud microphysics

« Crater formation, vaporization,
conversion to wave energy, and
asteroid pulverization

Boussinesq solver

e Ax=100m, At=0.5 s
'h--A I_E D * Tsunami propagation and

dispersion

Computational Fluid
Dynamics (CFD) model

* |nundation of coastal areas and
forces on structures
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Looking forward

Water Depth 3 km
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