ACES: First Results from Space

Cacciapuoti L¹, Abgrall M², Allart E³, Bauch A⁴, Bize S², Clairon A², Crescence P³, Delva P², Diener W A⁵, Eckl J⁶, Enzer D⁵, Esnault F X⁷, Fuijeda M⁸, Gibble K⁹, Goujon D¹⁰, Guerlin C¹¹, Heimbach F⁴, Helm A³, Ichikawa R.⁸, Jetzer P¹², Kannanthara J¹³, Kehrer J³, Kodet J¹⁴, Lachaud R³, Laurent P², Léger B⁷, Le Poncin-Lafitte C², Lilley M², Liu S¹⁵, Lorini L², Lours M², Marz S¹⁴, Massonnet D⁷, McKelvy J⁵, Montenbruck O¹⁶, Niedermaier T³, Pataraia S¹, Patla B¹⁷, Peignier T¹, Peik E⁴, Perri A¹⁰, Piester D⁴, Pittet J¹⁰, Plumaris M¹, Prochazka I¹⁸, Rahm J⁴, Roze J², Salomon C¹¹, Santarelli G^{2,19}, Savalle E²⁰, Schaefer W¹⁵, Schlicht A¹⁴, Schreiber U¹⁴, Schwall T¹⁵, Schwatke C¹⁴, Sekido M⁸, Shemar S¹³, Thulliez E⁷, Tjoelker R⁵, Tunesi J¹³, Vollmair P¹⁴, Wang Q¹⁰, Weinberg S¹, Wermuth M¹⁶, Weyers S⁴, Wolf P², Yu N⁵

¹European Space Agency, ESTEC, Noordwijk, The Netherlands ²LTE, Observatoire de Paris-PSL, CNRS, LNE, Sorbonne Université, Université de Lille, Paris, France

³Airbus Defence and Space, Friedrichshafen, Germany

⁴Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

⁵Jet Propulsion Laboratory, California Institute of Technology, USA

⁶Bundesamt für Kartographie und Geodäsie, Geodetic Observatory Wettzell, Bad Kötzting, Germany

⁷Centre National d'Etudes Spatiales, Toulouse, France
⁸National Institute of Information and Communications Technology, Koganei, Tokyo, Japan
⁹The Pennsylvania State University, University Park, USA
¹⁰Safran Timing Technologies SA, Neuchâtel, Switzerland
¹¹Laboratoire Kastler Brossel, ENS-PSL, Paris, France
¹²Physik-Institut, Universität Zürich, Zürich, Switzerland
¹³National Physical Laboratory, Teddington, United Kingdom
¹⁴Technical University of Munich, Munich, Germany
¹⁵Timetech, Stuttgart, Germany
¹⁶German Space Operations Center, DLR, Weßling, Germany

¹⁷National Institute of Standards and Technology, Boulder, USA
 ¹⁸Czech Technical University in Prague, Prague, Czech Republic
 ¹⁹LP2N, IOGS, CNRS and Université de Bordeaux, Talence, France
 ²⁰IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Email: Luigi.Cacciapuoti@esa.int

On 21 April 2025, the Atomic Clock Ensemble in Space (ACES) payload was launched to the International Space Station (ISS) and installed at the external payload facility of the Columbus module (see Fig. 1).

Since then, the PHARAO clock, which uses laser cooled cesium atoms to generate a signal with a predicted stability and accuracy of $1-2\times10^{-16}$, is compared to atomic clocks on ground by means of two time and frequency transfer systems: a link in the microwave domain (MWL) and a pulsed optical link (ELT). The ACES microwave link is expected to deliver comparisons of

clocks to a few parts in 10^{17} , opening unique opportunities to test general relativity, constrain dark matter models, and develop applications in relativistic geodesy, time & frequency metrology, and timescales distribution.

ACES is currently completing its in-orbit commissioning. During this phase, the PHARAO clock is optimized in terms of frequency stability, the on-board links are characterized, and the accuracy evaluation of PHARAO is initiated using MWL comparisons with ground-based atomic clocks. Connected to the ground terminals of the ACES MWL, the atomic clocks operated by LTE in France, PTB and Wettzell in Germany, NPL in the United Kingdom, JPL and NIST in the United States, and NICT in Japan are contributing to the ACES clock network. The ACES ground segment is then completed by satellite laser ranging stations connecting their clocks to ACES via the ELT optical link. The commissioning activities are expected to be concluded before the end 2025, thus releasing ACES to start the routine science phase.

In this paper, we will present the first space-based results of the ACES mission, including the PHARAO characterization measurements, the ACES links performance evaluation, and the first comparisons of the PHARAO clock with atomic clocks on ground.



Fig. 1: ACES installed on the ISS, at the external payload facility of the Columbus module (Credits: ESA-NASA).