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ABSTRACT

Hazard Detection and Avoidance (HDA) systems typically rely on Light Detecting And Ranging
(LIDAR) sensors to combine the visual observations with ranging measurements that help under-
stand the steepness and roughness of the terrain underneath the spacecraft. However, this sensor
suite is usually expensive, heavy, and takes up a considerable volume in the spacecraft platform. In
this work, a LIDAR-less method is proposed, where Convolutional Neural Networks (CNNs) are
trained and used to detect shadows, features, and sloped terrain. Using only passive instruments
such as cameras (as opposed to active instruments such as LIDARs) is a very challenging problem
and makes assessing the topology of the surface of interest the key to the proposed approach.
To cope with that, a dataset is generated using Blender that includes several small celestial body
geometries to increase the generalisation capabilities of the networks. Stochastic feature popula-
tions are distributed on the surface of the different meshes used to add variability and enrich the
dataset, and different illumination conditions are also considered. The networks trained are based
on the classic Residual Network (ResNet) architecture and exploit the benefits transfer learning
offers (in particular for semantic segmentation problems like the one described here) by initialis-
ing their weights to those obtained from the ImageNet dataset.
Results show that the networks are capable of predicting very accurately the hazards present in
the input observations provided, particularly for shadows and features. Performances for slope
estimation show an overall accuracy always above 75%, which is high for this type of problem.
Furthermore, the composition of the three layers trained (feature detection, shadow detection, and
slope estimation) show that the safety maps generated are capable of very accurately predicting
and deciding where a landing can safely take place. Preliminary Hardware In the Loop (HIL)
tests are also included to show the algorithm’s performances when real hardware is used for image
acquisition.

1 INTRODUCTION

Interacting with planetary surfaces is becoming a key technology for the current space market. Mis-
sions like Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer
(OSIRIS-REx), Hayabusa2, or Double Asteroid Redirection Test (DART) are clear examples that the
goal when flying a spacecraft in a small-body environment is to take a sample of the surface materials
to take back to Earth for further analysis or to make contact with the asteroid or comet in some way;
even to the point of trying to deviate from its trajectory. Be that as it may, whether it is for scientific or
for planetary defence purposes (and maybe soon for mining purposes too), the capability to interact
with a planetary body is definitely something that any mission to a small celestial body would benefit
from having.
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However, interacting with a planetary surface is a very complex problem that involves many other
disciplines, such as relative navigation, trajectory design and control, contact dynamics analysis, risk
management, or autonomous operations; among others.
The methods involved in assessing whether a certain surface is a safe or dangerous spot to land are
often used in HDA algorithms. HDA systems and algorithms are used to identify and avoid elements
that could be considered potentially risky, such as boulders, cracks, craters, holes, steep terrain, or
shadowed areas, for instance. The avoidance is usually taken care of by the guidance and control
modules of the spacecraft, while the detection is tackled by the navigation module. HDA systems
have been investigated since [1, 2], where their use for lunar landing was discussed.
HDA systems typically rely on LIDAR sensors to combine the visual observations with ranging mea-
surements that help understand the steepness and roughness of the terrain underneath the spacecraft.
However, this sensor suite is usually expensive, heavy, and takes up a considerable volume in the
spacecraft platform. In fact, they could weigh up to 25 kg and require up to 200W of power [3].
LIDARs are considered active instruments because they are actively interacting with the environment
to take observations, i.e., they emit a laser beam that is afterwards received by the instrument itself
to measure the way in which the beam was reflected by the surface. The above-mentioned works in
[1, 2] are based on this type of active sensors.
On the other hand, optical sensors such as cameras, on the other hand, are considered passive instru-
ments because they only take information from the environment, without actively interacting with it.
Using only passive instruments is a very challenging problem because they offer no range-like ob-
servation, which is the type that is typically exploited to build Digital Elevation Maps (DEMs). This
makes assessing the topology of the surface of interest the key element of the proposed approach.
Passive systems have also been discussed in [3] or [4], but it was concluded that the slope estimation
was lacking.
The key element that these technologies were missing was more powerful and resource-efficient Im-
age Processing (IP) capabilities. Until a few years ago, traditional IP techniques were used, which
are challenging because of their computational burden and hardware limitations. Currently, Artifi-
cial Intelligence (AI) offers new tools to work around this problem, mainly in the form of Artificial
Neural Network (ANN). In [5], it is proposed to use these to tackle navigation scenarios. ANNs
drastically reduce the computational effort needed to process images, rendering them very appealing
for on-board applications. CNNs in particular are a type of network that use convolutions to identify
critical features in an image. In [6], this architecture was studied and used to identify lunar craters,
showing very promising transferability and generalisation properties by training a network based on
lunar images and testing the networks on images of Mercury’s surface.
In more current pieces of work, CNNs have shown to be the generally preferred architecture for IP
tasks. In [7, 8], they are used to estimate the pose of a non-cooperative spacecraft. Then, in [9], it
was concluded that CNN-based algorithms perform better than traditional techniques. More recently,
[10, 11] have shown how these networks perform for orbital navigation scenarios.
However, one of the main drawbacks of Deep Learning (DL) architectures such as CNNs is the large
amount of data they need [12, 13]. Moreover, because the training scheme is based on a supervised
approach, the data has to be labelled.
Even with all of the above, developing algorithms to process passively acquired images that are able
to assess the geometry and roughness of the observed body still remains an important problem to
tackle. To cope with that, the proposed method exploits the shadows cast by the geometry of the
planetary body to infer the slopes in the terrain, relative to the local gravity vector at the surface.
In this work, a method is proposed that attempts to solve some of the most troublesome aspects of
the detection part of the system: hardware requirements and cost. A focus is placed on the role of
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autonomous navigation and, in particular, on the identification of elements that could put to risk a
potential landing or interaction with the orbited body. This paper presents a LIDAR-less method,
where CNNs are trained and used to detect features, shadows, and sloped terrain.
In the following, section 2 will introduce the architectures used for the networks and the techniques
used to develop them. Section 3 will describe how the artificial datasets used for the training were
generated. After that, section 4 will show the results obtained after training and will include some
initial estimates for images taken by real sensors. To close out, section 5 sums up the key aspects of
this work and proposes some new lines of work for the future.

(a) (b)

Figure 1: Comparison between a traditional convolutional block (left) and a residual block (right).

2 ARCHITECTURE

CNNs are multilayer feed-forward structures that use convolutions to apply image processing filters.
Stacking several layers of these filters achieves very accurate pixel-by-pixel classifications. Three
main types of layers are present in these architectures:

1. Convolutional layers: image filters are applied to identify a certain pattern or feature.

2. Pooling layers: feature maps are reduced to their main attributes.

3. Fully-connected layers: final classification.

Training a network from zero is quite a cumbersome process that requires a great deal of computa-
tional power and resources. Thus, transfer learning [14] is used to start training the networks from a
state that has already been tested and validated. This reduces the computational burden of the train-
ing and allows to add more flexibility to the training by minimising the effort needed to get accurate
network predictions.
Another negative aspect of CNNs is what is called the vanishing gradients problem. To train a neural
network, the partial derivatives at each layer are needed to propagate upwards the weight modifica-
tions that are inferred from the comparison between the current estimate and the labelled ground truth.
When the network architecture becomes too deep, i.e. too many layers are stacked, these derivatives
become smaller for each step towards the first layers that they take, not affecting those initial layers at
all. In [15], a novel solution was proposed where residual layers were introduced to prevent that loss
of information with depth, as depicted in figure 1. By doing so, deeper architectures were possible to
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train, which are able to obtain a much more complete understanding of the different features present
in the image. These are called ResNets.
The networks used in this work are based on the classic ResNet architecture (in particular ResNet-34,
see Table 1) and exploit the benefits that transfer learning offers (especially for semantic segmentation
problems like the one described here) by initialising its weights to those obtained from the ImageNet
dataset.

Table 1: ResNet-34 architecture.

Layer Output size 34-Layer

Conv1 112× 112
7× 7, 64, stride2

3× 3maxpool, stride2

Conv2-x 56× 56

[
3× 3, 64
3× 3, 64

]
× 3

Conv3-x 28× 28

[
3× 3, 128
3× 3, 128

]
× 4

Conv4-x 14× 14

[
3× 3, 256
3× 3, 256

]
× 6

Conv5-x 7× 7

[
3× 3, 512
3× 3, 512

]
× 3

1× 1 Average pool, 1000-d, softmax

3 DATASET GENERATION

Following recommendations by [16, 17], three datasets are usually needed to train a neural network
and bring it to an operational stage:

• Training set: the largest set of the three. Used to train the weights of the network.

• Validation set: a smaller set used during the training to keep the neural network from over-fitting
to the training set.

• Test set: another small set not used in the training, used to validate the operational use of the
network.

To train the networks intensively, a dataset is generated using Blender that includes several small
celestial body geometries to increase their generalisation capabilities. Stochastic feature populations
are distributed on the surface of the different meshes used to add variability and enrich the dataset,
and different illumination conditions are also considered. Using several randomly generated initial
orbital states, images are rendered from very different orbital positions and orientations, to broaden
the different viewpoints from which predictions are expected. Figure 2 exemplifies the different
meshes used for the training dataset.
As has been introduced before, the training scheme follows a supervised approach. Thus, a set of true
labels needs to be provided, along with the rendered images used for prediction. The labels proposed
for this task are four: safe, unsafe, deep-space, and undetected. Table 2 gathers the different labels
included, their colouring, and their meaning.
Since there are three layers that need to be trained for, each of the rendered images needs to be paired
up with three masks, namely feature detection, shadow detection, and slope estimation. Figure 3
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(a) Bennu. (b) 67P/Churyumov-Gerasimenko.

(c) Eros. (d) Lutetia.

Figure 2: Examples of the different base meshes and feature distributions for the training and valida-
tion dataset.

Table 2: Label meaning for each of the layers developed for astroHda.

Shadow detection Feature detection Slope estimation Color
Safe Illuminated Non-featured Slope < 15◦ Green

Unsafe Shadowed Featured Slope ≥ 15◦ Red
Deep-space Blue
Undetected Black

shows the truth masks for an arbitrary image of 67P/Churyumov-Gerasimenko included in the training
dataset.
Feature masks are generated by pixel-subtraction techniques comparing the featured mesh against
the original (naked) mesh. Shadows are detected by pixel brightness and ruling out the deep-space
background. Slopes are divided into safe and unsafe based on a threshold of 15◦, which is based
on [18]. To generate those masks, the slope of each of the facelets of the shape model used for
the rendering is computed with respect to its local gravity vector and labelling them as safe if the
value is under 15◦ and unsafe otherwise. Figure 4 provides an example of how the 67P/Churyumov-
Gerasimenko sloped mesh looks.
In total, 2000 images were generated for the dataset, to which augmentation techniques were applied
during training. The augmentation parameters are gathered in Table 3. The images in the dataset are
split for training and validation in an 80-20 ratio and the rendered images are resized to 300 × 300
pixels. The training is performed in two stages: an initial one were only the last layers are free,
preventing the weights acquired using transfer learning to change in the first layers of the network
and thus conserving the high-level feature detection capabilities; and a final stage were the last layers
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Figure 3: Examples of the masks generated for an arbitrary rendering of 67P/Churyumov-
Gerasimenko. From left to right: original rendered image, features, shadows, slopes. Blue represents
deep-space, red represents dangerous areas, and green represents safe areas.

Figure 4: 67P/Churyumov-Gerasimenko shape model with its facelets coloured according to the slope
threshold established at 15◦. Green and red faces correspond to areas with slopes lower or higher than
15◦, respectively.

are unfrozen to fine-tune the last layers to the nature of the images used. In total, 22 epochs of
training were used (10 for the initial stage and 12 for the final one), where an Intersection over Union
(IoU)-based method was used as accuracy metric and a FlattenedLoss of CrossEntropy-Loss is used
as loss-function.

Table 3: Augmentation parameters for training dataset

Random flip True
Max rotation angle 10.0 deg

Min/Max zoom 1.0 / 5.0
Max lightning change 0.2

Max warping 0.2
Probability of affine transformation 0.75

Probability of brightness change 0.75
Gaussian noise mean/σ 0.0 / 10.0

4 RESULTS

With the networks trained, the quality of the predictions can be assessed by comparing them against
the true labels. On a pixel-per-pixel basis, as it is typically done for semantic segmentation tasks, the
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percentages of True Positives (TP) and False Positives (FP) are computed, based on training statistics.
These numbers are provided in figure 5.

(a) Shadow detection. (b) Feature detection.

(c) Slope estimation.

Figure 5: Statistics obtained from the training dataset. Performances are normalised with respect to
the total number of true labels for each category, shown in the color bar.

The confusion matrices for the training set show that the predictions performed by the networks are
very high for the deepspace and safe labels, while slightly lower for the danger one. There are two
reasons for that: the first one being the performances of the network themselves, and the second being
related to the labelling algorithm.
For the shadow detection layer, safe (illuminated) areas are very accurately identified, with the amount
of FP for that category being around a 0.2% of the totality of safe labels. Deep space is also accurately
identified, providing the additional capability of limb detection. The detection of the shadows seems
to be slightly blurred by the presence of deep space close to shadowed areas, which makes it difficult
for the network to estimate the limits between these two conditions, i.e., to estimate the limb of the
body when illumination conditions are very poor.
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Figure 6: Arbitrary rendered image of Bennu (left), with its corresponding generated true feature
mask (centre), and the prediction by the feature detection layer.

Figure 7: Test dataset results on four different rendered images. On each of the panels, the left-hand
side corresponds to the rendered image given as input to the networks, the first column is the target,
and the second column is the prediction. The first row corresponds to feature detection, the second to
shadow detection, and the third to slope estimation.
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Results for the feature detection layer show very similar behaviour to those of the shadow detection
layer, even showing a greater amount of FP for the unsafe label. In this case, however, this is due to
the labelling algorithm placing rectangles on top of the features to be detected. Figure 6 shows an
example where these rectangles can be observed. In the prediction shown on the right-hand side of
that figure, it can be observed how the network has learnt not only to detect the features but also to
adapt the predictions to the natural shapes of the features, flagging features that resemble reality much
more than the automatically placed rectangles. This explains why some of the unsafe labels within
those rectangles are predicted as something else, raising the number of FP in that category.
The masks for the slope estimation layer, differently from the ones generated for the shadow and fea-
ture detection, are directly based on the geometry of the body and not on image processing techniques.
This means that the accuracies shown in its confusion matrix are entirely due to the performance of
the algorithm. The fact that similar amounts of FPs are observed for both the danger and safe cate-
gories confirms it. With a 75.09% of true positives for danger detection and an 83.98% for safe, the
network still shows very accurate predictions, even in the layer that was anticipated to be most prob-
lematic, due to the lack of depth information in the inputs to the network of the LIDAR-less approach
proposed in this work. Results for four images of the training dataset are provided in figure 7

(a) Ida. (b) Tempel-1.

(c) Toutatis. (d) Vesta.

Figure 8: Examples of the different base meshes and feature distributions for the test dataset.

4.1 Test Set

One of the aspects of the proposed solution for HDA systems is that it needs to be able to generalise its
predictions to (ideally) any body, which is the reason why different geometries and feature populations
were included in the training dataset. To analyse whether this is the case for the developed networks,
an additional dataset is created: the test set. This dataset has a size of 100 images and uses bodies,
features, and feature distributions that are completely different to those used for the training dataset,
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to avoid any possible adulteration on the predictions. Figure 8 shows examples of the images used in
the test set, featuring Ida, Tempel-1, Toutatis, and Vesta as minor celestial bodies.
The statistics obtained indicate that the feature and shadow detection capabilities of the algorithm are
very versatile and adapt well to unknown environments. On the other hand, slope estimation seems
to struggle when the geometries present in the images are not included in the training phase of the
network, going from 89.7% in overall accuracy to 78.0%, as it is shown in figure 9.

(a) Shadow detection. (b) Feature detection.

(c) Slope estimation.

Figure 9: Statistics obtained from the test dataset. Performances are normalised with respect to the
total number of true labels for each category, shown in the color bar.

4.2 Safety Maps

The final outcome of this algorithm is the safety maps corresponding to the acquired images. Safety
maps are generated by overlaying the predictions for each layer using their probability masks as
deciding factors, i.e., integrating them together before a unique label is chosen for each of the layers.
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Figure 10 provides an example of a safety map. In it, the probability maps that each layer of the
network uses to choose the final label are shown. These probabilities (or how certain the network
is about a certain pixel label) go from 0 to 1 and are the direct result of the convolutions and de-
convolutions that take place in the U-shape architecture of the network.
To compose these probabilities and stack them together, a priority criterion is defined, in which deep
space pixels rule over danger pixels, which in turn rule over safe pixels. This approach is taken to take
a conservative perspective on the final labelling since it suffices that one of the three layers considers
a pixel to be not safe to predict it as a hazard or deep space. Keeping the application in mind, this
method achieves the main target, which is discarding any pixel that has not been identified as safe
by all three layers, supporting thus the robustness of the algorithm before unclear areas of the minor
celestial body.

Figure 10: Example of a rendered image, the evaluation of the different hazard detection layers, and
the final safety map composition. Left is the input rendered image, centre shows (from left to right)
the target masks, the predictions, and the probability maps for feature detection, shadow detection,
and slope estimation respectively; and right displays the final safety map.

4.3 Hardware-In-the-Loop

As explained before, one of the main drawbacks of Machine Learning (ML)-based methods is their
low Technology Readiness Level (TRL) in space applications. In an effort to start the process of taking
this work to its next stage, a preliminary HIL campaign was performed at Deutsches Forschungszen-
trum für Künstliche Intelligenz (DFKI) Bremen, where facilities to imitate small body illumination
conditions. The setup used can be observed in figure 11, where the left-hand image shows the fea-
tures available at the facilities, plus the 3D-printed mount onto which a Raspberry Pi 4 model B1 was
attached. The tests performed during this campaign executed the trained networks directly from the
Raspberry Pi, which was capable of generating the safety maps shown before in around 10 seconds.
Since the implementation of the networks on the Raspberry Pi was not specifically tailored, and no
dedicated hardware was included to deal with CNN-based architectures, no data about the processor
was collected at this stage.
The right-hand side of figure 11 shows the lights used to simulate small celestial body illumination

1Specifications for the Raspberry Pi 4 Model B can be found here.
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Figure 11: The setup used at DFKI Bremen for the image acquisition. On the left, a close-up look at
the mount used to hold together the camera and the processing unit. On the right, an overview of the
Space Hall before completely darkening the room.

conditions. A sample of the images taken using a Raspberry Pi Camera Module v22 can be seen in
figure 12. There, different illumination angles and intensities are used. The position and number of
elements are also varied to test the algorithm under a wider set of circumstances. Figure 13 shows the
predicted features detected by the networks. The inclusion of Gaussian noise in the training proved
to be fundamental for the processing of these real images, in which camera noise is present.

Figure 12: Images taken at DFKI, with different feature configurations and illumination conditions.

5 CONCLUSIONS

In this work, a CNN-based algorithm has been developed for HDA systems in which no LIDAR is
required. This makes the whole system much lighter, smaller, and reduces its cost, from a component

2Specifications for the Raspberry Pi Camera Module v2 can be found here.

GNC 2023 – P. Peñarroya 12



Figure 13: Predictions obtained for the different images taken at DFKI. Hazards are highlighted in
yellow.

and a mission design perspective. Using only image observations as inputs is a very challenging task
if information about the in-depth geometry of an object needs to be processed, however, CNNs prove
to be capable of handling these scenarios by exploiting geometry-influenced factors such as shadows.
A pipeline for dataset generation has been developed and used for the networks trained. This dataset
generator provides versatility and eases the production of small celestial body environment images
for the training of image processing networks. The generation of true masks to be used as labels
for supervised training has also been developed, based on traditional image processing techniques
and shape model geometry analysis. Some imperfections are found in the labelling system, which
struggles to find a clear distinction between shadows and deep space and over-labels features due to
the rectangles covering them being larger than the features themselves.
The chosen architecture (ResNet-34) shows great performances for semantic segmentation tasks, even
with only a few training epochs, thanks to transfer learning. Augmentations help increase the variety
and heterogeneity of the images in the dataset. With that training, three layers are generated for the
prediction of shadows, features, and the estimation of slopes above a threshold of 15◦.
Including the shape models representing the actual geometries onto which the networks will be used
improves the capabilities of the network to predict the limb of the body and helps with the slope
estimation too, especially for areas that are not too well-lit.
Predictions obtained from the training and the test sets show overall accuracies always above 75%,
being the slope estimation the worst of the layers. This was anticipated and, even if lower than
the other layers (where accuracies always above 85% are achieved), it still represents a satisfactory
benchmark.
Safety maps are generated using the probability maps predicted by the networks and using a priority-
based methodology in which a conservative approach is chosen to predict as safe pixels only those
that have been predicted as safe by all three layers.
Additionally, some preliminary HIL testing has been included where images were taken using a Rasp-
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berry Pi camera module v2, mounted on a Raspberry Pi 4 model B at DFKI Bremen. Results obtained
show that the inclusion of Gaussian noise is fundamental to cope with sensor noise.
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