

PDC 2021
Vienna, Austria

*Please submit your abstract at
<https://atpi.eventsair.com/7th-iaa-planetary-defense-conference-2021/abstractsubmission>*

You may visit <https://iaaspace.org/pdc>

(please choose one box to be checked)

(you may also add a general comment - see end of the page)

Key International and Political Developments

Advancements in NEO Discovery

New NEO Characterization Results

Deflection & Disruption Modeling and Testing

Mission & Campaign Design

Impact Consequences

Disaster Response

The Decision to Act

Public Education and Communication

Small Perihelion Effects on Near-Sun Asteroids

Carrie E. Holt^{a,*}, Matthew M. Knight^{b,a}, Michael S.P. Kelley^a, Quanzhi Ye^a, Colin Snodgrass^c, Alan Fitzsimmons^d, Jessica M. Sunshine^a, Derek C. Richardson^a

^a*Department of Astronomy, University of Maryland, College Park, MD 20742, USA*

^b*Department of Physics, United States Naval Academy, 572C Holloway Rd, Annapolis, MD 21402, USA*

^c*Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ, UK*

^d*Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK*

Keywords: Near-Earth Asteroids, Characterization, Observations

Many comets and asteroids spend part of their dynamical lifetimes with small perihelion distances (or “low- q ”) as a result of dynamical interactions with Jupiter. However, there are fewer such asteroids observed than are predicted by dynamical models, even while assuming a deficit due to collisions with the Sun or planets, or an escape from the inner solar system [1]. The lack of observed low- q asteroids is thought to be due to near-complete disintegration when they reach a perihelion distance $q \lesssim 0.076$ au. The extreme processes that cause disintegration likely create surface alteration on low- q asteroids, which can affect properties important to planetary defense (e.g., detectability, inferred composition).

Thermal cracking, spin-up, meteoroid impacts, and subsurface volatile release are disruptive near-Sun processes that are likely to cause surface alteration, which might change the spectral slope of the surface. Such surface alteration is observable from the ground using optical telescopes and provides us with a better understanding of the processes occurring and the effects they have on near-Sun asteroids. Observations are critical in preparing mitigation techniques that account for surface alteration caused by extreme thermal effects. Broadband optical colors (e.g., g'-r', r'-i') can be obtained quickly for fainter objects, which makes such observations optimal for a population study.

There are 51 known asteroids that reach perihelion distances of $q \leq 0.15$ au, twelve of which are potentially hazardous objects (PHAs). Only eight near-Sun objects have been included in previous studies of low- q asteroids [2, 3, 4]. Since 2017, we have undertaken a campaign to measure the optical colors of these objects, primarily using the 4.3-m Lowell Discovery Telescope (formerly the Discovery Channel

^{*}Corresponding author

Email address: carrieholt@astro.umd.edu (Carrie E. Holt)

Telescope) and the 4.1-m SOAR telescope, supplemented by data from the 2.5-m Isaac Newton Telescope and Lowell Observatory's 42-in and 31-in telescopes. We have successfully observed 24 low- q asteroids; we attempted to observe nine more low- q asteroids but were unsuccessful, most likely due to the large uncertainties in their orbits. In this work, we report the optical colors of low- q asteroids and resulting implications for planetary defense.

Comments:

Oral, Student Competition

References

- [1] M. Granvik, A. Morbidelli, R. Jedicke, B. Bolin, W. F. Bottke, E. Beshore, D. Vokrouhlický, M. Delbò, P. Michel, Super-catastrophic disruption of asteroids at small perihelion distances, *Nature* 530 (2016) 303–306.
- [2] H. Campins, M. S. Kelley, Y. Fernández, J. Licandro, K. Hargrove, Low Perihelion Near-Earth Asteroids, *Earth Moon and Planets* 105 (2009) 159–165.
- [3] D. Jewitt, Properties of Near-Sun Asteroids, *The Astronomical Journal* 145 (2013) 133.
- [4] S. Urakawa, K. Ohtsuka, S. Abe, T. Ito, T. Nakamura, Fast Rotation of a Subkilometer-sized Near-Earth Object 2011 XA₃, *The Astronomical Journal* 147 (2014) 121.