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ABSTRACT

The objective of this paper is to analyze the dynamics and control strategy of a new type of for-
mation flying architecture, enabling unprecedented space mission capabilities.
We propose a tether satellite system composed of two satellites, flying in LEO, connected by a
linear tether, maintained in tension along the cross-track direction (perpendicular to the motion
and radial directions). A three-dimensional multibody model was developed, by writing the equa-
tions of relative dynamics in an orbiting reference frame. The dynamic model was linearized and
an optimal LQR controller was introduced. The linear control law was validated by simulating its
application on the full system model, demonstrating the possibility of stabilizing the system by
using a unidirectional and constant force. Aerodynamic surfaces were then inserted into the model
so as to generate the required force. Finally, the proposed aerodynamic stabilization approach was
compared to a gyroscopic stabilization alternative strategy.

1 INTRODUCTION

Space tethers are cables that mechanically connect two or more satellites. They have a variety of ap-
plications, ranging from propulsion to momentum exchange [3]. Since 1974, when this concept was
first introduced, several studies have investigated the potential of using tethers in space [9]. Among
these, the use of tether for formation flying appears to be very convenient. By introducing a tether
that connects formation elements in a radial direction, i.e., perpendicular to the Earth’s surface, it is
possible to take vantage of the stabilizing effect of Earth’s gravity gradient.

Nevertheless, it would be also convenient to stabilize these systems in different configurations, so as
to expand the range of possible applications.

The use of environmental effects for free-flying spacecraft control is not new to the literature. Several
studies have been performed on aerodynamic and solar radiation pressure control. Examples of these
applications can be found in [7] where control strategies based on aerodynamic drag to perform ren-
dezvous maneuvers are introduced, in [10] where an aerodynamic attitude stabilization is analysed or
in [2] where a possible attitude control based on solar radiation pressure is studied.

This paper, by following the original idea presented in [12], introduces for the first time, to the best
knowledge of the authors, a control based on aerodynamic forces for stabilizing a tethered system.
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This consists of the introduction of aerodynamic surfaces, placed on the satellites at the ends of the
tether, which stabilize a tether system that spans along cross-track direction, i.e., aligned with the
direction of the angular momentum of the orbit.

Obtaining a large-aperture oriented in the cross-track direction could enable unique remote sensing
missions. For instance, by using synthetic aperture radar techniques, it is possible to obtain the same
performance of a large antenna through the use of several antenna elements that sample the signal
in space. A system of satellites extending in the cross-track direction allows particularly convenient
sampling for earth observation applications, in fact, the greater the beseline and number of satellites
in the cross-track direction is, the more directional and accurate the measurement obtained will be
[11].

The paper is organised as follows. Section 2 introduces the mathematical model of the system dynam-
ics and equations of motion. Section 3 introduces the mathematical model of the aerodynamic forces
generated by the control surfaces. Section 4 introduces the process used to synthesize an LQR con-
troller based on the linearized model of the system. Section 5 introduces the numerical data used in
the simulations. Section 6 shows the results of the simulations. In Section 7, the proposed architecture
is compared with a tethered system stabilized by gyroscopic effects. Finally, Section 8 summarizes
the results, emphasizing advantages and challenges of the proposed system.

2 KINEMATICS AND DYNAMICS

This section introduces the models and equations used to simulate the non-linear dynamics of a tether
satellite system in low Earth orbit. Initially, the relative dynamics equation used to describe the
evolution of the system with respect to an orbiting reference frame is analyzed, and then the models
used for external perturbations and the simulation of tether dynamics are introduced. Finally, the
complete ODE system used to analyse the behaviour of the system is defined.
The following notation is used:

• Unit vectors are represented in lowercase characters with a hat: â

• Vectors are represented in lowercase, underlined characters: a

• Matrix of components of a vector v in the Cartesian Coordinate System A is defined by bold
character and superscript letter : vA

• Matrices are represented in uppercase characters with brackets: [A]

In this study, two Cartesian Coordinate System (CCS) are used. The first one is the Earth Centered
Inertial (ECI) CCS. This consists in a quasi-inertial CCS centered in the Earth’s center E and having
coordinates axes identified by the following unit vectors:

• ê1 is pointed towards the Vernal Equinox;

• ê3 is pointed towards the celestial North Pole;

• ê2 completes the right-hand triad ê2 = ê3 × ê1

The second CCS is the Local Vertical-Local Horizontal (LVLH). This CCS is centered in the in-
stantaneous position of a orbiting satellite O (real or virtual), called Chief, and has coordinate axes
identified by the following unit vectors:
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Figure 1: Representation of ECI and LVLH Cartesian Coordinates Systems.

• ô1 = r0/∥r0∥ is pointed toward the instantaneous radial direction;

• ô3 = (r0 × ṙ0)/∥r0 × ṙ0∥ is pointed toward the angular momentum vector (cross-track);

• ô2 completes the right-hand triad ô2 = ô3 × ô1 (along-track).

Where r0 denotes the position vector of the center of the orbiting reference frame, and the dot is used
to indicate the time derivatives with respect to the inertial frame.
The equation of the dynamics are here obtained by following the same procedure described by Pastori
et al. [13]. By denoting by ri the position vector of the i-th satellite, it yields:

ri = r0 + ρ
i

(1)

where ρ
i

indicates the relative position of the i-th satellite with respect to the chief satellite.
The Cartesian Coordinate System introduced and the vector described in the previous equation are
visualized in Fig. 1.
At this point it is necessary to take into account that the LVLH frame is not inertial, being in rotation
with respect to the ECI frame. By taking the time derivative with respect to the inertial frame, terms
caused by the apparent accelerations resulting from the relative rotation of the two systems appear:

r̈i − r̈0 = ρ̈
i
≡ ◦◦

ρ
i
+ Ω̇× ρ

i
+ Ω× Ω× ρ

i
+ 2Ω× ◦

ρ
i

(2)

Where r̈i − r̈0 denotes the difference of accelerations between the satellite and the center of the
Orbital Cartesian Coordinate System, ρ

i
denotes the relative position vector of the i-th satellite, Ω

and Ω̇ denote the angular velocity and angular acceleration vectors of the orbital CCS with respect to
the inertial CCS. The dot symbol represent the time derivative in the inertial frame, and the circular
symbol denotes the time derivative in the LVLH frame.
Thanks to the equation obtained, it is possible to directly integrate the relative dynamics, so as to
impose a control of the relative position of the various satellites that make up the formation.
It is necessary to emphasize that in the considered case the center of the LVLH CCS does not represent
a real satellite, but rather a virtual observer with respect to which the dynamics is described. It was
chosen to consider on the chief only the perturbations due to the gravitational potential, considering
harmonics up to J2.

r̈0 = ag,0 (3)
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Where ag,0 represents the gravity acceleration acting on r0, calculated using earth gravitational po-
tential using Legendre polynomial of order 2 and degree 0.
Thanks to this choice it is possible to introduce the equations described by Xu et al.[8], that gives an
analytical formulation for the angular velocity Ω and angular acceleration Ω̇ of the orbital reference
frame.
On the other hand, the accelerations that act on each body are:

r̈i = ag,i + ad,i + asp,i + atb,i + ui +
1

mi

∑
k

tk,i (4)

Where ag,i represents the gravity acceleration acting on ri, calculated using earth gravitational poten-
tial using Legendre polynomial of order 4 and degree 4; ad,i represents the atmospheric drag acceler-
ation, taking into account the atmospheric density, calculated according to the Harris-Priester model
[4], and the characteristics of the satellite; asp,i represent the solar radiation pressure acceleration,
considering a shadow factor, the distance with respect to the Sun and the characteristics of the satel-
lite; atb,i denotes the third body perturbation due to the Moon and the Sun, where both are modeled as
point mass; mi indicates the mass of the i-th body; ui represents the control acceleration acting on the
i-th satellite; finally, tk,i refers to the tension force acting on the i-th body generated by the segment
of tether that connects the i-th body to the k-th. These forces can be computed by considering the
tether segments as one-directional springs. It is possible to define the tension in each tether segment
as a function of orientation (τ̂k,i), strain, and strain rate. By denoting the position of the spacecraft
connected at the other end of the tether segment with ρ

k
, it is possible to indicate the direction of the

tension as:
τ̂k,i =

ρ
k
− ρ

i

∥ρ
k
− ρ

i
∥

(5)

The tension of the tether is:
tk,i = EA(ϵk,i + ck,iϵ̇k,i)τ̂k,i (6)

Where E is the Young’s modulus of the material composing the tether, A the cross section, ϵk,i the
strain, ϵ̇k,i the strain rate, and ck,i the damping coefficient. In order to define the latter quantities, it is
necessary to use the undeformed length of the tether l̄k,i, its mechanical stretch ℓk,i and its mechanical
stretch rate ℓ̇k,i defined as:

ℓk,i = ∥ρ
k
− ρ

i
∥ − l̄k,i (7)

It is then possible to define:

ϵk,i =
ℓk,i
l̄k,i

(8)

ϵ̇k,i =
ℓ̇k,i
l̄k,i

(9)

The tension is represented graphically in Fig. 2. It is necessary to emphasize that, in contrast to what
happens in a spring, in the case of the tether the tension forces are present only when the cable is
stretched. In the case of compression, tethers instantly goes into a buckling, and the stress goes to 0.
By subtracting Eq. 4 with Eq. 3, it yields:

r̈i − r̈0 = ∆ag,i + ad,i + asp,i + atb,i + ui +
1

mi

∑
k

tk,i (10)

By substituting Eq. 10 in Eq. 2, the final expression of the equation of relative dynamics (Eq. 11) is
derived.
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Figure 2: Description of the tether tension in LVLH components

Figure 3: Schematisation of the system analysed in this study

◦◦
ρ
i
= ∆ag,i + ad,i + asp,i + atb,i + ui +

1

mi

∑
k

tk,i − Ω̇× ρ
i
− Ω× Ω× ρ

i
− 2Ω× ◦

ρ
i

(11)

At this point, the generic equation introduced can be applied to every body composing the system.
In the case analysed, the system is composed of 11 different aligned bodies, that represents either
satellites or lumps of tether. The first and the eleventh bodies represent the satellites at the extremities
of the tether, the bodies relative to index between 2 and 10 represents lumps of tether, located at the
center of mass of each segment (Fig. 3).
By using this model, a system of ordinary differential equation (ODE) is obtained, which considers
66 state variables. The state matrix is composed of the position components (3 states) and the velocity
components (3 states) of every body composing the system. In order to obtain this set of 66 scalar
ODE, the accelerations, the positions and the velocities are projected in scalar components on the
LVLH CCS:

ρL
i = ρ

i
·

{ô1
ô2
ô3

}
=

xi

yi
zi

L

ρ̇L
i =

◦
ρ
i
·

{ô1
ô2
ô3

}
=

vxivyi
vzi

L

ρ̈L
i =

◦◦
ρ
i
·

{ô1
ô2
ô3

}
=

v̇xiv̇yi
v̇zi

L

(12)

aL
i = (∆ag,i + ad,i + asp,i + atb,i − Ω̇× ρ

i
− Ω× Ω× ρ

i
− 2Ω× ◦

ρ
i
) ·

{ô1
ô2
ô3

}
=

ax,iay,i
az,i

L

(13)

uL
i = ui ·

{ô1
ô2
ô3

}
=

ux,i

uy,i

uz,i

L

(14)
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tLk,i = tk,i ·

{ô1
ô2
ô3

}
=

(tk,i)x(tk,i)y
(tk,i)z

L

(15)

Finally, Eq. 16 represents the ODE system used in the following analysis.

ẋ1

ẏ1
ż1
v̇x1
v̇y1
v̇z1

...
ẋi

ẏi
żi
v̇xi
v̇yi
v̇zi
...

ẋ11

ẏ11
ż11
v̇x11
v̇y11
v̇z11



L

=



vx1
vy1
vz1

ax,1 + (t2,1)x/m1 + ux,1

ay,1 + (t2,1)y/m1 + uy,1

az,1 + (t2,1)z/m1 + uz,1
...
vxi
vyi
vzi

ax,i + (ti−1,i + ti+1,i)x/mi

ay,i + (ti−1,i + ti+1,i)y/mi

az,i + (ti−1,i + ti+1,i)z/mi
...

vx11
vy11
vz11

ax,11 + (t10,11)x/m11 + ux,11

ay,11 + (t10,11)y/m11 + uy,11

az,11 + (t10,11)z/m11 + uz,11



L

(16)

Only one tension force is present on body 1 and 11, as these are connected only to the second and
second-to-last satellites, respectively. In addition, the control accelerations act only on the satellites
at the ends, so exclusively on bodies 1 and 11.
Finally, the states relative to the origin of the LVLH CCS are considered:

ẋ0

ẏ0
ż0
v̇x0
v̇y0
v̇z0



E

=


vx0
vy0
vz0
ax,0
ay,0
az,0



E

(17)

In this case the ODE is propagated in ECI components.
By considering all the components, the final ODE system is composed of 72 states.

3 AERODYNAMIC-SURFACE MODELING

In this section the model used to simulate the aerodynamic surfaces controlling the systems is intro-
duced. In order to produce the control force needed to keep the system in a formation, two flat plates
are added to the satellites at the ends of the tether. These surfaces are placed in such a way to produce
a lift force that keep a tension in the tether during the orbit (Fig. 4). The aerodynamic force generated
by each surface can be decomposed into a lift component L, perpendicular to the orbital velocity, and
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Figure 4: Representation of the system with stabilizing aerodynamic surfaces

Figure 5: Satellite 1 view with representation of the aerodynamic forces generated by the flat plates

a drag component D, parallel to the velocity (Fig. 5).
These can be modeled as:

L =
1

2
ρA∥v∥2CL (18)

D =
1

2
ρA∥v∥2CD (19)

Where ρ denotes the atmospheric density, calculated according to the Harris-Priester model [4], A
denotes a reference surface (in this case, the flat plate surface), v denotes the velocity with respect to
the atmosphere, and CL and CD denote the coefficients of lift and drag of the plates, respectively. In
order to obtain the aerodynamic coefficients of the surfaces as a function of the angle of attack α, the
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free molecular flow model was used [5].

CL =

[
2− σn − σt√

πS
exp (−S2 sin2 α) + σn

vw
∥v∥

]
sin 2α +[

2− σn

S2
+ 2(2− σn − σt) sin

2 α

]
cosα erf(S sinα)

(20)

CD = 2σn
vw
∥v∥

sin2 α +
2√
πS

[
(2− σn) sin

2 α + σt cos
2 α

]
exp (−S2 sin2 α) +

2

[
(2− σn)

(
sin2 α +

1

2S2

)
+ σt cos

2 α

]
sinα erf(S sinα)

(21)

Where:

S =
∥v∥√
2RT

vw =

√
πRTw

2
erf(x) =

2√
π

∫ x

0

e−t2dt (22)

Denoting by T the atmospheric temperature, by Tw the temperature of the flat plates, R the specific
gas constant, and σn and σt the tangential and normal reflective coefficients.

4 LINEARIZATION AND CONTROL

To control the tether system, an LQR controller was synthesized based upon a linearized model. In
order to obtain a linearized model, a linearization analogous to that used by Quadrelli and Pastori was
performed [6], [13], so as to obtain a dynamic equation of the type:

˙[X] = [A][X] + [B][F]ctr + [L][F]ext (23)

Where [A], [B] and [L] are, respectively, the state, input and disturbance matrices, [F]ctr and [F]ext
represents respectively the column matrices of the control and external forces, and the state [X] is
defined as:

[X] =


∆ρL

1

∆ρL
11

∆ρ̇L
1

∆ρ̇L
11

 =


ρL
1 − ρL

1,eq

ρL
11 − ρL

11,eq

ρ̇L
1 − ρ̇L

1,eq

ρ̇L
11 − ρ̇L

11,eq

 (24)

The equilibrium state is considered in a cross-track configuration, i.e. with the tether parallel to the
direction ô3.

ρ̃L
1,eq =

 0
0

−ltether/2

L

ρ̃L
11,eq =

 0
0

ltether/2

L

˙̃ρ
L

1,eq = ˙̃ρ
L

11,eq =

00
0

L

(25)

Where ltether indicates the total length of the tether. Since it is intended to control only the relative
position of the satellites, the equilibrium state is repositioned with respect to the current position and
velocity of the centre of mass of the whole system:

[X]eq =


ρL
1,eq

ρL
11,eq

ρ̇L
1,eq

ρ̇L
11,eq

 =


ρ̃L
1,eq + ρL

CM

ρ̃L
11,eq + ρL

CM

˙̃ρ
L

1,eq + ρ̇L
CM

˙̃ρ
L

11,eq + ρ̇L
CM

 (26)
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Figure 6: Representation of the discretization used

Where ρCM and ρ̇CM the position and velocity of the center of mass of the whole system.
By using the above mentioned matrices, the LQR control gain was computed by solving the Riccati
equation:

−[Q] − [A]T [P]∞ − [P]∞[A] + [P]∞[B][R]−1[B]T [P]∞ = 0 (27)

[K]LQR = [R]−1[B]T [P]∞ =
[
[K]LQR,1 [K]LQR,11

]
(28)

Where [K]LQR,1 and [K]LQR,11 represent the gain matrices for the state feedback of the first and
eleventh satellites, respectively.

5 SIMULATION SET-UP

The system analyzed in this study consists of two satellites connected by a tether with a length of 100
m. The data used for the tether characteristics are reported in Tab. 1. The tether are analogous to
those used by Quadrelli and Lorenzini [1].

Table 1: Tether characteristics

Length m 100
Linear Density kg/km 10
Diameter mm 1.7
Young Modulus GPa 20.844
Axial Stiffness N 47312
Damping Ns 47.312

Considering the discretization used, the characteristics of the bodies are calculated. Given that the
nine central bodies represent the centers of mass of a tether segments of 10 meters of length, and
given the tether characteristics listed in the table above, the mass and surface values are calculated.
The contribution of a half tether segment is also added to the satellites at the ends, as shown in the
Fig. 6. The resulting values are shown in the Tab. 2.
The system is initialized in a cross-track configuration in LVLH coordinates, i.e., with all bodies at x
and y null and z equispaced between -50 m and 50 m, so as to have the center of mass aligned with
the center of the LVLH. The reference orbit, on which the LVLH is initialized, is circular, equatorial,
with an altitude of 200 km.
For the aerodynamic surfaces placed on the end satellites, two square flat plates of 6 m2 each are
considered for each satellite. The characteristics of these surfaces are reported in Tab. 3.
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Table 2: Satellites and tether lumps characteristics

Satellite (i= 1,11) Tether lumps (i= 2,3,4,5,6,7,8,9,10)
Mass kg 50.05 0.1
Area (Spacecraft bus only) m2 1 0.017
Drag coefficient (Spacecraft bus only) - 2 2
Reflectivity coefficient - 1.1 1.1

Table 3: Aerodynamic surfaces characteristics

Total area for satellite m2 12
Normal reflective coefficient - 0.7
Tangential reflective coefficient - 0.7
Temperature K 350

Finally, the control law was obtained using the weights described in Eq. 29.

[Q] =
[

[I] [0]
[0] 10000[I]

]
[R] =

1

Fmax

[
[I] [0]
[0] [I]

]
(29)

Where [I] and [0] are, respectively, 6 by 6 identity and zero matrices, and Fmax = 1 N represents the
maximal control value.

6 RESULTS

In this section the results of numerical simulations are reported, by considering the ODE system and
the characteristics of the satellites and tether introduced above.
All plots show results in LVLH components referred to the center of mass of the system.
The first simulation performed considers the tether system positioned in a cross-track configuration,
with no control applied (Eq. 30).

uL
1 = uL

11 =

00
0

L

(30)

In Fig. 7 the evolution of the system during half orbit can be observed.
The plot shows that the system is not stable, beginning to swing on the cross-track direction. This
behaviour was to be expected, considering that the only stable configuration is radial, due to the grav-
itational gradient.
At this point the LQR controller is introduced (Eq. 31), applying the control accelerations on the
satellites at the end of the tether, obtained with control gains introduced in Eq. 28.

uL
1 =

[K]LQR,1

m1


x1 − x1,eq

y1 − y1,eq
z1 − z1,eq
vx1 − vx1,eq
vy1 − vy1,eq
vz1 − vz1,eq



L

=

ux,1

uy,1

uz,1

L

uL
11 =

[K]LQR,11

m11


x11 − x11,eq

y11 − y11,eq
z11 − z11,eq
vx11 − vx11,eq
vy11 − vy11,eq
vz11 − vz11,eq



L

=

ux,11

uy,11

uz,11

L

(31)
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Figure 7: Simulation of an uncontrolled system initialized in a cross-track configuration

Figure 8: Simulation of a controlled orbit using LQR controller

In this case, the system maintains the desired configuration (Fig. 8). Oscillations of the lumps of
tether on the order of few meters can be seen, as the tether tends to arch due to aerodynamic drag.
Despite this, the satellites maintain their reference position, oscillating only of a few centimeters. By
analyzing the applied control accelerations, it can be noticed that the only significant component is in
the cross-track direction, and opposite for the two satellites.
An additional simulation introduced a control on the system only in this direction, to test whether this
is sufficient to keep the system in formation. To do this, constant, opposing control accelerations are
introduced for the two satellites, constantly tensioning the tether (Eq. 32). The value of the control
acceleration used was extrapolated from the average value of the previous simulation.

uL
1 =

 0
0

−5 · 10−4

L

ms−2 uL
11 =

 0
0

5 · 10−4

L

ms−2 (32)

Fig. 9 shows the results of this simulation. The stabilization achieved with constant, unidirectional
control accelerations provides performance similar to that achieved with an active control, by keeping
the system close to the nominal configuration.
The last simulation considers the system with aerodynamic surfaces. As presented earlier, these are
arranged in such a way as to generate a lift in the cross-track direction on the two end satellites, so as
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Figure 9: Simulation of a controlled orbit using constant and unidirectional control acceleration

Figure 10: Simulation of a controlled orbit using aerodynamic stabilization

to provide the tension needed to maintain the system in the desired configuration (Eq. 33).

uL
1 =

1

m1

 0
−D1

L1

L

uL
11 =

1

m11

 0
−D11

L11

L

(33)

In this stabilization, the angle of attack was calculated to ensure a constant lift equal to the value used
in the previous simulation, by considering the velocity of the system with respect to the atmosphere
and the change in density. Figs. 10 and 11 show the evolution of the position of the bodies during
an orbit, the angle of attack of the aerodynamic surfaces of the two satellites, and the aerodynamic
accelerations generated.
The angle of attack varies continuously to ensure a constant lift, by compensating for the effects of
variation of the aerodynamic density. The main causes of density variation are due to Harris-Priester
model [4], which takes into account density fluctuations by considering the effect of solar radiation,
and the increase of the density due to the decrease in altitude caused by the atmospheric drag.
Despite the drag acting on both satellites, the lift generated by the aerodynamic surfaces succeeds in
keeping the system in the desired configuration. It is consequently shown that such a system is able
to stabilize in cross-track configuration using only aerodynamic effects.
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Figure 11: Lift and Drag acceleration produced by the aerodynamic stabilization

Figure 12: Comparison of the aerodynamic stabilization proposed (right) and a gyroscopic stabilization (left)

7 COMPARISON WITH A GYROSCOPIC STABILIZATION

In this section, the aerodynamic stabilization analyzed in this paper is compared with a stabilization
strategy which utilizes the gyroscopic effect to generate the tension in the tether. A representation of
these two types of stabilization can be seen in the Fig. 12.
As shown graphically in the figure, gyroscopic stabilization consists of putting the system into rota-
tion so as to generate a constant tension in the tether, ensuring a periodic oscillation in the cross-track
direction (ô3). The rotational speed can be modulated according to the needs of the mission, but this
will still have an bottom limit due to the minimum stabilization tension and top limit defined by the
mechanical characteristics of the tether.
Although these two stabilization methodologies are very different, both allow the achievement of
a system that extends in the cross-track direction during an orbit, even if with different behaviors
(Fig. 13). The aerodynamically stabilized system provides a constant distribution of satellites in
the z-direction, thus ensuring a constant cross-track base-line throughout the mission. As mentioned
earlier, this kind of configuration would maximize performance in terms of remote sensing for earth
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Figure 13: Comparison of the cross-track projection for the two proposed stabilizations

observations. Nevertheless, it must be emphasized that the aerodynamic surfaces required for stabi-
lization in combination with the LEO’s dense atmosphere generate significant drag, which de-orbit
the system quickly, consequently requiring frequent maneuvers to restore the system to its reference
orbit. A gyroscopic stabilization, on the other hand, does not require the atmosphere for proper op-
eration, finding possible applications even in environments other than low Earth orbit. In addition, a
gyroscopically stabilized system requires far fewer corrections to maintain orbit and reference con-
figuration. However, its angular velocity is nominally aligned in the inertial frame, possibly making
more complicated the remote sensing operations, and the continuous oscillations in the cross-track
direction generate quite a few constraints for the mission. Since the system has to exploit the period
of maximum extension in the cross-track direction to make the measurement, there will be constraints
in terms of acquisition duration and time interval between acquisitions.

8 CONCLUSIONS

In this paper, an aerodynamic control technique applied to tether satellite systems was analyzed.
Through the introduction of a control law, it was possible to demonstrate, by simulations, that it is
possible to maintain a tether system in a cross-track configuration through a constant control accel-
eration applied on the end satellites. By maintaining a constant tension in the tether, in fact, it is
possible to ensures the positioning of the satellites in the formation, because the tether generates an
elastic pullback force when they move from their equilibrium position. The introduction of aerody-
namic surfaces on the end satellites was considered, so as to generate the tensions in the tether by
aerodynamic lift. Despite the advantage of this stabilization, however, it is necessary to consider the
drawbacks caused by aerodynamic drag. In order to function properly, this configuration needs to be
in very low orbit, where aerodynamic drag has a considerable effect on satellites, causing a fast orbit
decay. Possible solutions could be a mission optimization or the combination of stabilizing surfaces
and air-breathing electric motors, which could ensure continuous propulsion of the system during the
mission, continuously compensating for the effects of aerodynamic drag.
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