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ABSTRACT 

 

In-orbit servicing (IOS) and active debris removal (ADR) are crucial for extending the 

life of satellites and addressing space debris. Autonomous spacecraft equipped with 

robotic arms can capture and detumble resident space objects. A combined strategy that 

controls the spacecraft base and robotic arm together is proposed to address the pre-

capture phase, where the goal is to approach with the arm end-effector a point on an 

uncontrolled tumbling spacecraft. A recursive method is applied to the dynamic model 

of the space robot to fully capture the dynamic coupling between its elements in a 

computationally efficient way. The proposed control design consists in using nonlinear 

control laws, based on extensions of the well–known computed torque controller to 

space robots, together with a systematic tuning procedure based on the structured 𝐻∞  

framework. As the control law is designed in the joint space but the control objective is 

formulated in the task space, a closed-loop inverse kinematic solver is included in 

design. A robustness analysis is performed with respect to rigid-body uncertainties and 

sloshing effects. The performance of the proposed controller is evaluated on a 

representative scenario for capturing an uncontrolled tumbling object using a nonlinear 

dynamical model. 

1 INTRODUCTION 

The potential of In-Orbit Servicing (IOS) to extend the operational life of satellites and the need to 

implement Active Debris Removal (ADR) to effectively tackle the space debris problem are well 

known among the space community [1], [2]. Research on technical solutions to enable this class of 

missions is thriving, also pushed by the development of new control systems. Several solutions have 

been proposed over the years to safely capture orbital objects, the majority of which rely on robotic 

systems [3]. A promising solution is the employment of an autonomous spacecraft (chaser) equipped 

with a highly dexterous robotic arm able to perform the berthing with a resident space object. In this 

respect, the design of an effective, reliable, and robust Guidance Navigation and Control (GNC) 

system, for which several architectures and hardware configurations are possible, plays a key role to 

ensure a safe mission execution. The problem addressed in this work concerns the design of control 

laws suitable for capturing an uncontrolled tumbling spacecraft using a space robot equipped with a 

redundant manipulator. When developing the control and guidance functions, we assume that there 

are navigation functions available that  estimate the necessary quantities. The integration and testing 

of the proposed design in a full GNC simulator is reported in [4]. 
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Space robots are characterized by a high level of complexity due to the kinematic and dynamic 

coupling between its elements [5]. The motion of a single body (be it the base or one of the links) is 

transmitted downstream (in the direction of the end-effector) according to the properties of the 

kinematic chain, while it dynamically affects the system also in the upstream direction (towards the 

satellite-base). From a practical standpoint this means that, unlike ground-fixed robots, the motion of 

the manipulator causes a motion of the base.  Keeping these aspects in mind, the dynamic model of a 

space robot is mostly built upon the traditional theory of rigid multibody system.  In this work a 

recursive method is applied to the system of interconnected rigid bodies which, unlike the direct 

equivalent, models the interconnections in terms of forces and kinematic constraints acting at a single-

body level. This results in a large set of equations which can be solved efficiently by exploiting 

recurrence relations descending from the tree-like structure of the system [6].  

To address the capturing problem, we propose a combined control approach wherein base and 

manipulator states are controlled together, following ideas recently proposed in the literature. As 

shown by recent works [7], a combined architecture has several advantages over decoupled control 

strategies, from fuel efficiency improvement to performance improvement. The specific approach 

developed in this work consists in using nonlinear control laws, based on extensions of the well–

known computed torque controller to space robots, together with a systematic tuning procedure based 

on the 𝐻∞  framework. Indeed, while computed torque controllers deliver good tracking performance 

in a large domain of operating conditions, they suffer from modelling uncertainty (being based on 

feedback linearization) and no rule is given to tune the gains of the feedback component of the control 

law, which is typically based on a (nonlinear) Proportional Derivative (PD) law. Hence, trial and error 

procedures are often employed in practice to select the gains and achieve acceptable performance. 

Such an approach is made more challenging by the large number of states of space robots. Therefore, 

the following systematic tuning approach is considered: first, both the plant and the control law are 

linearized about a nominal operating point and a linear uncertain description of the closed–loop 

system is derived; then, the gains of the control law are tuned by leveraging the structured 𝐻∞ 

framework [8]. In this manner, the control law handles by design the rigid body nonlinearities while 

performance requirements can be imposed in the neighbourhood of the desired configurations when 

tuning the gains. The proposed synthesis approach allows accounting for dynamics effects at 

synthesis time, such as sloshing, actuator dynamics, flexibility, orbital dynamics, which are neglected 

when deriving the nonlinear control law.  

The proposed control law is designed using a joint space formulation and thus requires computing 

a reference trajectory in the joint space. However, the capture of uncontrolled tumbling objects poses 

requirements to the trajectory generation in the task space. Hence, a trajectory generation for the end 

effector in task space is proposed together with an inverse kinematic approach which exploits the 

manipulator redundancy to locally optimize the manipulability index. As the target is in an 

uncontrolled tumbling state, the reference trajectory generation is generated propagating forward in 

time the target motion, but continuously updating the propagation with information on the current 

state of the target coming from the Navigation System.  

After the controller synthesis, a robustness analysis with respect to rigid-body geometry and 

inertial uncertainties and sloshing has been performed, while the performance of the proposed 

controller is evaluated in a representative scenario for the capturing of an uncontrolled tumbling 

object using a full nonlinear model of the dynamics. 

2 CONTROL-ORIENTED MODELING of SPACE ROBOTS 

In this section, we discuss the approach developed to derive a mathematical model of space robots 

suitable for control design which is also sufficiently accurate for a preliminary assessment of the 

closed-loop performance. 
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2.1 Configuration and kinematics 

A brief description of the geometry, frames definition and kinematics of the space robot is reported 

next. It should be noted that the kinematics of a spacecraft-mounted manipulator shares significant 

similarities with its ground-fixed counterpart; however, as highlighted in the following, the satellite-

base position and orientation must be accounted for in the formulation of the problem. 

 

 
Figure 1 Geometry of a spacecraft-manipulator system - Credits [9]. 

The spacecraft-manipulator system represented in Figure 1 can be thought of as a tree-like structure 

where the kinematic relationship between two generic adjacent bodies is defined by the type of 

interconnection between the bodies themselves. A geometric model of the system provides a 

description of the positions of the interconnections, the joints, onto each body. Frames 𝐹𝑖,𝑗 identify 

the position of joint 𝑗 onto body 𝑖, while each body has its own local body frame 𝐹𝑖, also known as 

link frame. Frame 𝐼 is the reference coordinate system, while frame 𝐹0 is located on the base body 

(when describing a space robot, 𝐹0 identifies the main satellite body). The transform from body frame 

𝐹𝑖 to joint frame 𝐹𝑖,𝑗 is given by the constant spatial transform 𝑋𝑖
𝑖,𝑗

, while the position and attitude of 

the each link can be described either with respect to the satellite-base ( 𝑋0
𝑖  transforms) or to the 

reference coordinate system ( 𝑋𝐼
𝑖  transforms). Moreover, each joint defines a joint transform 𝑋𝐽𝑖 

which connects joint frame 𝐹𝑖,𝑗 to the subsequent body frame 𝐹𝑗; this transform depends on the joint’s 

position variable, 𝑞𝑖. The forward kinematics of the space manipulator can be solved by recursively 

exploiting the above transformations up to the desired element of the system. Given a space robot 

made up by a chain of 𝑁𝐵 + 1 bodies (satellite base + 𝑁𝐵 links) connected by 𝑁𝐵 joints, the pose 

transformation from the satellite-base frame 𝐹0 to the last link frame 𝐹𝑁𝐵 can be expressed as follows, 
 

𝑋0
𝑁𝐵 = 𝑋𝐽𝑁𝐵

(𝑞𝑁𝐵) 𝑋𝑁𝐵−1
𝑁𝐵−1,𝑁𝐵 ⋯𝑋𝐽1(𝑞1) 𝑋0.

0,1
 (2.1) 

 

If one wishes to express the pose of the last body (end-effector) with respect to the reference 

coordinate system 𝐼, it is sufficient to post-multiply the above expression by the pose transform 

between frame 𝐼 and frame 𝐹0, 𝑋𝐼
𝑁𝐵 = 𝑋0

𝑁𝐵 ∗ 𝑋𝐼 .
0  

The forward kinematics of the space robot is tightly related to the nature of the motion allowed by 

the joints of the manipulator. In fact, each joint can be thought of as a motion constraint between its 

adjacent bodies; different joint types (revolute, prismatic, helical, etc.) correspond to different motion 

constraints. The generic joint transform 𝑋𝐽𝑖 describes the spatial motion of a body frame  𝐹𝑗 with 

respect to its predecessor joint frame, 𝐹𝑖,𝑗. This transform can be identified by the joint type and by 
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its position coordinate, 𝑞𝑖. The joint coordinate of a revolute joint is therefore given by the angle of 

rotation of 𝐹𝑖 with respect to 𝐹𝑖,𝑗 along a common axis, known as joint axis. By convention, we 

consider this rotation to take place along the revolute joint’s local 𝑧 − axis. Remembering that 

revolute joints never allow a relative translation between their predecessor and successor frames, the 

following holds,  

 

 𝑋𝐽𝑖(𝑞𝑖) =  𝑟𝑜𝑡(𝐸𝑖) ∗ 𝑡𝑟𝑎𝑛𝑠𝑙(𝑟𝑖), (2.2) 

 

𝑡𝑟𝑎𝑛𝑠𝑙(𝑟𝑖) =  [
𝐼3 03

−𝑟𝑖 × 𝐼3
] , 𝐸𝑖 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝑟𝑜𝑡𝑧(𝑞𝑖), 𝑟𝑜𝑡𝑧(𝑞𝑖)), 𝑟𝑜𝑡𝑧(𝑞𝑖) =  [

cos 𝑞
𝑖

sin 𝑞
𝑖

0

− sin 𝑞
𝑖

cos 𝑞
𝑖

0

0 0 1

] and 𝐼3, 03 

are, respectively, the 3 × 3 identity matrices and the 3 × 3 matrix filled with zeros. Note that, for a 

revolute joint, 𝑟𝑖 = [0,0,0]
𝑇. Moreover, since joints always express a motion constraint, each joint 

type is featured by its own motion subspace, identified by a matrix. In particular, the motion subspace 

matrix of a revolute joint is expressed as 𝑆𝑟 = [0,0,1,0,0,0]𝑇 . 
Solving the forward kinematics of the system also allows to express the angular and linear velocities 

of each element with respect to a known reference frame. By recalling the previous concepts applied 

to the revolute joint case, we can define the velocity across joint 𝑖 as the difference of the velocities 

of its successor and predecessor elements, 𝑣𝐽𝑖 = 𝑣𝑖 − 𝑣𝑖−1. Since the motion must take place 

accordingly to the joint’s motion subspace, the following is also valid, 𝑣𝐽𝑖 = 𝑆𝑟�̇�𝑖. Therefore, we 

obtain the equation to compute the velocity of each body in the system as follows, 

 

 𝑣𝑖 = 𝑣𝑖−1 + 𝑆𝑟𝑖�̇�𝑖. (2.3) 

 

Note that this expression can be effectively used in a forward manner, i.e., moving outwards with 

respect to the satellite base. In fact, once the 6 elements of the base velocity 𝑣0 are known along with 

the joints velocity variables �̇�𝑖, (2.3) can be recursively applied to find the velocity of each body in 

the system, 

𝑣𝑖 = 𝑣0 +∑𝑆𝑟𝑗�̇�𝑗

𝑖

𝑗=1

= 𝑣0 + 𝐽𝑖(𝑞)�̇�, (2.4) 

where 𝐽𝑖 is the i-th body Jacobian and �̇� is the joint-space velocity vector, highlighting the linear 

dependence of 𝑣𝑖 on the joint velocity variables. 

2.2 Dynamics 

To describe the space robot dynamics, we have developed a mathematical model using the floating 

version of the Recursive Newton-Euler Algorithm (RNEA), which leverages the efficient Composite 

Rigid-Body Algorithm (CRBA) for the computation of the inertial terms, as suggested in [6]. The 

considered approach allows dealing with arbitrarily complex configurations while maintaining 

computational efficiency. In addition, an orbital disturbance term was included in the model to 

evaluate possible undesired effects resulting from the coupling between multibody and orbital 

dynamics that are usually ignored in previous studies. 

The dynamic equations of motion for the system can then be compactly represented as follows: 

 

𝐻(𝑞) {

�̇�𝑏
�̇�𝑏
�̈�
} + 𝐶(𝑞, 𝜔𝑏 , 𝑣𝑏 , �̇�, 𝜂𝑏 , 𝑟𝑏\𝑡) =  {

𝑀𝑏

𝐹𝑏
𝜏
}, (2.5) 
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where 𝜔𝑏, 𝑣𝑏 ∈ ℝ3 represent the base angular and linear velocity respectively, 𝑞  ∈ ℝ7 is the vector 

of joint angles, 𝜂𝑏 ∈ 𝕊3 is the unit quaternion describing the base attitude with 𝕊𝑛 = {𝑣 ∈
 ℝ𝑛+1: ‖𝑣‖ = 1}, 𝑟𝑏/𝑡 ∈ ℝ

3 is the position of the base with respect to the target, while 𝑀𝑏, 𝐹𝑏 ∈ ℝ3 

and 𝜏 ∈ ℝ7 are base torque, force and joint motor torque, respectively. The joint space inertia matrix 

is denoted as H ∈ ℝ13x13, while C ∈ ℝ13  represents the Coriolis/centrifugal term that accounts also 

for terms related to the relative orbital dynamics. 

3 CONTROL ARCHITECTURE and DESIGN 

This section is devoted to presenting the combined control architecture proposed to solve the pre-

capturing phase addressed in this work, where the goal is to accurately track the target's position with 

the manipulator's end effector. To this aim, we have considered using a joint space formulation of the 

control law combined with a closed-loop inverse kinematic solver to convert the end effector desired 

trajectory into joint profiles. 

3.1 Control Architecture 

The determination of the control framework primarily relies on the available control inputs, 

measurements, state estimation, mission phase (such as reach and capture or stabilization), and the 

chosen control strategy. The joint space architecture depicted in Figure 1 has been used, where the 

input and output terms are reported.  

 

 
Figure 2: Joint space control architecture. 

The desired trajectory comprises desired base states and manipulator states (joint angles and 

velocities). The inverse kinematics problem is solved to obtain the manipulator desired states for a 

desired profile of the end effector's pose (provided by a dedicated guidance function described in 

Section 0). Additionally, the desired acceleration is required to compute feedforward control actions 

without resorting to numerical differentiation. Both the base and manipulator states are utilized for 

feedback control. 

3.2 Combined control law design 

The concept of computed torque controllers, initially proposed for ground-based robots with fixed 

bases has been extended to encompass the control of space robots in [10]. The structure of this control 

law is simple: the estimated robot states are used to calculate estimates of the Coriolis/centrifugal 

terms and the mass matrix; a PD controller acts upon the control error, which may be nonlinear, while 

feedforward action is employed to enhance system tracking capabilities. Such a control law ensures 

asymptotic tracking of the error (assuming exact knowledge of the system parameters and ideal 

measurements) and is commonly employed in robotics. The potential increase in complexity is not a 

critical concern since efficient recursive methods exist to compute the quantities required by the 

controller. It is important to note that for small control errors and low speeds, typically encountered 
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in close proximity operations where Coriolis/centrifugal terms are negligible, the controller behaves 

approximately like a simple PD controller. 

The goal of the control law is to follow a desired attitude trajectory 𝜂𝑏
𝑠𝑝 , 𝜔𝑏

𝑠𝑝
, a base position trajectory 

in the LVLH frame frame 𝑣𝑏
𝑠𝑝, 𝑟𝑏\𝑡

𝑠𝑝
, and joint trajectories obtained through the inverse kinematics 

function  𝑞𝑠𝑝, �̇�𝑠𝑝. The expression for the computed torque control law is given by [4]: 

 

{
𝑀𝑏

𝐹𝑏
𝜏
} =  �̂�(𝑞, 𝜔𝑏 , 𝑣𝑏 , �̇�) + �̂�(𝑞) {

𝑎𝜔
𝑎𝑣
𝑎𝑞
}, 

 

 

(3.1) 

where 𝑎𝜔 , 𝑎𝑣, 𝑎𝑞 represent virtual input variables, defined next. The attitude virtual input is   

 

 𝑎𝜔 = −𝐾𝑑,𝑎𝑡𝑡𝜔𝑒 + 𝐾𝑝,𝑎𝑡𝑡𝜂𝑒,𝑏,𝑣𝑒𝑐𝐻/𝜂 + 𝑅𝑒�̇�
𝑠𝑝 − 𝜔𝑒 × 𝑅𝑒𝜔

𝑠𝑝,  (3.2) 

 

where 𝜂𝑒,𝑏 = {
𝜂𝑒,𝑏,𝑣𝑒𝑐
𝜂𝑒,𝑏,𝑠𝑐

} = 𝜂𝑏⊗𝜂𝑏
𝑠𝑝∗

, is the attitude error between the reference quaternion 𝜂𝑏
𝑠𝑝

 and 

the current quaternion computed using the quaternion product ⊗, 𝑅𝑒 = 𝑅(𝜂𝑏)𝑅(𝜂𝑏
𝑠𝑝 ∗) is the attitude 

error  expressed using rotation matrices, 𝐻/𝜂 = −2𝜂𝑒,𝑏,𝑠𝑐 is a function introduced to avoid unwinding 

[11] when using quaternions in the feedback law,  𝜔𝑒 = 𝜔𝑏 − 𝑅𝑒𝜔𝑏
𝑠𝑝

is the angular velocity error 

expressed in the body frame. 𝐾𝑑,𝑎𝑡𝑡, 𝐾𝑝,𝑎𝑡𝑡 ∈ ℝ
3×3 are the proportional and derivative gains for the 

attitude, respectively. The position virtual input is defined as 

 

𝑎𝑣 = 𝑅(𝜂𝑏) [�̇�𝑏
𝑠𝑝
− 𝐾𝑑,𝑝𝑜𝑠(𝑅

𝑇(𝜂𝑏)𝑣𝑏 − 𝑣𝑏
𝑠𝑝
) − 𝐾𝑝,𝑝𝑜𝑠(𝑟𝑏\𝑡 − 𝑟𝑏\𝑡

𝑠𝑝
)] − 𝜔𝑏 × 𝑣𝑏 (3.3) 

   

with 𝐾𝑑,𝑝𝑜𝑠, 𝐾𝑝,𝑝𝑜𝑠  ∈ ℝ
3×3. Finally, the joint virtual input is  

 

𝑎𝑞 = �̈�𝑠𝑝 − 𝐾𝑑,𝑗𝑜𝑖𝑛𝑡(�̇� − �̇�𝑠𝑝) − 𝐾𝑝,𝑗𝑜𝑖𝑛𝑡(𝑞 − 𝑞𝑠𝑝),   (3.4) 

 

where 𝐾𝑑,𝑗𝑜𝑖𝑛𝑡, 𝐾𝑑,𝑗𝑜𝑖𝑛𝑡 ∈ ℝ
7×7. We can collect the free parameters of the controller in block-diagonal 

matrices as 𝐾𝑝 = 𝑑𝑖𝑎𝑔(𝐾𝑝,𝑎𝑡𝑡, 𝐾𝑝,𝑝𝑜𝑠, 𝐾𝑝,𝑗𝑜𝑖𝑛𝑡), 𝐾𝑑 = 𝑑𝑖𝑎𝑔(𝐾𝑑,𝑎𝑡𝑡, 𝐾𝑑,𝑝𝑜𝑠, 𝐾𝑑,𝑗𝑜𝑖𝑛𝑡). 

3.3 Guidance and inverse kinematics 

The aim of the guidance strategy is to generate suitable trajectories for the capturing task while 

keeping it as simple as possible. To achieve this, the strategy does not include collision avoidance or 

interference checks during guidance. Instead, the consistency with collision-free operation is verified 

after the simulation. The capturing maneuver is divided into four main instants: 1) when the 

manipulator starts moving (𝑡𝑠𝑡𝑎𝑟𝑡), 2) from a specific time point (𝑡𝑝𝑜𝑖𝑛𝑡) to the time of grasping 

(𝑡𝑔𝑟𝑎𝑠𝑝), where the end-effector camera is directed towards the grasping point using the guidance 

design, 3) at the time of grasping (𝑡𝑔𝑟𝑎𝑠𝑝) when the end-effector is brought onto the grasping point, 

and 4) when the capture maneuver is completed (𝑡𝑒𝑛𝑑), as shown in Figure 3. 

 

 
Figure 3 Relevant time instants for trajectory design. 
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The reference trajectory is computed based on a desired trajectory of the end-effector and then 

translated into reference trajectories in the joint space using the inverse kinematic solution described 

next. The guidance of the base is obtained by selecting a proper fixed position in the LVLH frame 

while the trajectory for the arm is computed using a 5th order polynomial to match the initial and 

final states (including their derivatives) of the end-effector. The desired final state of the end-effector 

depends on the location of the grasping point at a specific time in the future. This location is predicted 

by propagating the target motion forward until the desired time, and then the inverse kinematic is 

solved to compute the joint coordinates guidance. Since the motion prediction of the target is only 

accurate for a short time horizon, the coefficients of the 5th order polynomial interpolation are 

updated at each step using current measurements of both the chaser and target states obtained from 

the navigation function. This allows for a new prediction of the future location of the grasping point. 

This approach compensates for variations in the expected location of the chaser's center of mass and 

the grasping point. As the time for grasping approaches, the prediction horizon for the grasping point 

location decreases, but the guidance is able to compensate for any mismatch in the final location of 

the grasping point. 

The forward kinematics relationships in equation (2.1) and can be used to describe the end-

effector’s position, attitude and velocity in the Cartesian space; therefore, they require as input the 

pose of the base and the joints’ position and velocity coordinates (i.e., 𝑞𝑖 and �̇�𝑖). In practice, when 

planning a robot’s task, the joint position and velocity variables are not known a priori, but they must 

be reconstructed starting from the knowledge of the desired end-effector Cartesian position and 

velocity. This process, known as inverse kinematics, allows the generation of a setpoint trajectory in 

the joint-space of the manipulator and, therefore, the synthesis of joint-space controllers. Unlike 

forward kinematics, whose solution is straightforward once the system’s configuration is known (see 

Section 2.1), inverse kinematics is featured by a higher degree of complexity. In general, solving the 

inverse kinematics means assigning a desired value 𝑋𝐼
𝐸𝐸 𝑑

 to the pose of the robot’s end-effector and 

then solving equation (2.1) for 𝑞1
𝑑 , … , 𝑞𝑁𝐵

𝑑 , the desired joint variables. Analytical approaches leading 

to closed-form solutions can only be applied to certain classes of robots and are indeed unsuitable to 

redundant manipulators [12].  

The approach we choose consists instead in solving the inverse kinematics at the joints velocity level 

by expressing the linear relationship (2.4) between the desired end-effector Cartesian velocity and the 

joint-space velocity as  

 

 𝑣𝐸𝐸
𝑑 = 𝑣0 + 𝐽𝐸𝐸(𝑞)�̇�𝑑, (3.1) 

 

and then solving for �̇�𝑑, 

 

 �̇�𝑑 = 𝐽𝐸𝐸
# (𝑞)(𝑣𝐸𝐸

𝑑 − 𝑣0), (3.2) 

 

where 𝐽𝐸𝐸
# (𝑞) is the right (Moore-Penrose) pseudo inverse of the end-effector Jacobian matrix, and 

𝑣0 must be considered since the satellite-base may have a nonzero velocity. It should be noted that, 

when the manipulator is redundant, has infinite solutions, and the one expressed in (3.2) is the one 

which minimizes the cost function 𝑔(�̇�) =
1

2
�̇�𝑇�̇�. 

Due to redundancy, there exists a subset of the joint-space velocities, the null space, which does not 

yield a velocity in the task space. In the particular case with 𝑣0 = 0, the joint velocities in the null 

space are a solution to the following homogeneous equation 

 

 𝐽𝐸𝐸(𝑞)�̇�0 = 0. (3.3) 
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According to the formulation in [13], the null space motion can be included in the inverse kinematics 

solution as 

 

 �̇�𝑑 = 𝐽𝐸𝐸
# (𝑞)𝑣𝐸𝐸/0

𝑑 + (𝐼𝑁𝐵 − 𝐽𝐸𝐸
# (𝑞)𝐽𝐸𝐸(𝑞)) �̇�0, (3.4) 

 

where 𝑣𝐸𝐸/0
𝑑 = 𝑣𝐸𝐸

𝑑 − 𝑣0 is the end-effector velocity with respect to the satellite-base, and 

(𝐼𝑁𝐵 − 𝐽𝐸𝐸
# (𝑞)𝐽𝐸𝐸(𝑞)) is a projector of the joint velocity vector �̇�0 onto the null space [14]. Vector 

�̇�0 is typically specified according to the projected gradient method, as in 

  

�̇�0 = 𝑘0 (
𝜕𝑤(𝑞)

𝜕𝑞
)

𝑇

, 
(3.5) 

 

where 𝑘0 > 0 and 𝑤(𝑞) is a differentiable objective function. Depending on the choice of 𝑤(𝑞), the 

inverse kinematics solution in equation (3.5) locally maximizes a performance index which may be 

related to robot dexterity, joint limits avoidance, obstacle avoidance, etc. Within this study, we have 

considered two different objective functions, 

 

 
𝑤1(𝑞) = √det(𝐽𝐸𝐸(𝑞)𝐽𝐸𝐸

𝑇 (𝑞)) ,         𝑤2(𝑞) = −
1

2𝑁𝐵
∑ (

𝑞𝑖−�̅�𝑖

𝑞𝑖,𝑀−𝑞𝑖,𝑚
)
2

𝑁𝐵
𝑖=1 , (3.6) 

 

where 𝑤1(𝑞) coincides with the manipulability index of the manipulator and therefore optimizes the 

null motion in order to maximize the robot dexterity [15], while 𝑤2(𝑞) is a performance index related 

to avoidance of mechanical joint limits, 𝑞𝑖,𝑀(𝑞𝑖,𝑚) denotes the maximum (minimum) limit for 𝑞𝑖 and 

�̅�𝑖 is the middle value of the joint range [16]. 

Hence, the inverse kinematics solution in (3.4) guarantees that 𝐽𝐸𝐸(𝑞)�̇�𝑑 = 𝑣𝐸𝐸/0
𝑑 , while also 

exploiting redundancy to locally optimize a selected performance index. However, this solution does 

not compensate for a mismatch between the current and desired end-effector location and attitude. 

Therefore, a feedback term dependent on the pose error 𝑝𝐸𝐸
𝑒 = ( 𝑋𝐼

𝐸𝐸 𝑑
)−1 𝑋𝐼

𝐸𝐸  ,  is added to make up 

for possible location and attitude errors, according to the Closed-Loop Inverse Kinematics (CLIK) 

algorithm proposed in [14]. Equation (3.4) is then transformed into the following expression: 

 

 �̇�𝑑 = 𝐽𝐸𝐸
# (𝑞) (𝑣𝐸𝐸/0

𝑑 + 𝐾𝑃(𝑝𝐸𝐸
𝑒 )) + (𝐼𝑁𝐵 − 𝐽𝐸𝐸

# (𝑞)𝐽𝐸𝐸(𝑞)) �̇�0. (3.7) 

4 CONTROL LAW SYNTHESIS 

Due to their reliance on feedback linearization, computed torque controllers can only provide limited 

robustness in the presence of uncertainties, usually in the form of local boundedness of the states. 

Additionally, no systematic tuning procedure is available for selecting the gains. A promising 

approach to address this limitation is to employ robust control theory for the systematic and optimal 

tuning of the controllers. 

Figure 4 illustrates the robustification process of nonlinear controllers. The starting point is the 

nonlinear system interconnected with a nonlinear controller, which comprises a nonlinear component 

and tunable parameters. To find appropriate parameters for these tunable elements, the linearization 

of both the plant and controller is performed. As depicted in the right part of the figure, the closed-

loop system is transformed into a linearized plant (possibly accounting for uncertainties in Linear 

Fractional Transformation (LFT) form) and a linearized control law including tunable parameters like 
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PD gains. Robust control methods and structured routines can then be employed to determine optimal 

gains for the tunable parts. Notably, it allows for the consideration of orbital dynamics effects, which 

are typically disregarded in other works on space robotics. 

 

 
Figure 4 Robustification of nonlinear controllers. 

In following subsections, we discuss the approach followed for the linearization of the equations of 

motion and of the control law, as well as the dependence of the model on uncertain parameters using 

the Linear Fractional Transformation (LFT) form. 

4.1 Plant and control law linearization 

We consider the set of dynamic equations in (2.5) together with the kinematics of the base described 

in terms of quaternions for the attitude and the relative position between the chaser and the target. In 

the following equations, δ⋆ denotes the perturbation of the variable ⋆ with respect to a reference 

configuration. To facilitate control gain tuning, the plant and controller will be linearized around a 

reference trajectory. Considering the expected slow maneuvers from the guidance, a constant 

reference configuration is used for linearization, which is consistent with existing approaches in space 

robotics. It should be noted that the uncertainties in mass, moments of inertia, and center of mass 

position account for variations in the robotic arm configuration. 

The linearization of the kinematics of the base is given by: 

 

 
𝛿�̇�𝑏 =

1

2
 {
𝛿𝜔𝑏
0
}, 

(4.1) 

 𝛿�̇�𝑏\𝑡 = 𝑅𝑏\𝑡(�̅�𝑏)𝛿𝑣𝑏 , 

 

(4.2) 

where 𝛿𝜂𝑏 denotes the quaternion perturbation, i.e., 𝜂𝑏 = 𝛿𝜂𝑏⊗ �̅�𝑏 and 𝑅𝑏\𝑡(�̅�𝑏) is the rotation 

matrix from body to LVLH frame corresponding to quaternion �̅�𝑏.  

In the absence of external perturbations, the linearized form of (2.5) is given by: 

 

𝐻(�̅�) {

𝛿�̇�𝑏
𝛿�̇�𝑏
𝛿�̈�

} =  {
𝛿𝑀𝑏

𝛿𝐹𝑏
𝛿𝜏

}. 
 

(4.3) 

Let 𝑥 = [ 𝛿𝜂𝑏,𝑣𝑒𝑐 , 𝛿𝑟𝑏\𝑡, 𝛿𝑞, 𝛿𝜔𝑏 , 𝛿𝑣𝑏 , 𝛿�̇�]
⊤

 be the vector of small variations with respect to the 

reference configuration, 𝐴𝑘𝑖𝑛 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(
1

2
𝐼3, 𝑅𝑏\𝑡, 𝐼𝑛) and 𝑢 = [𝛿𝑀𝑏 , 𝛿𝐹𝑏 , 𝛿𝜏]

⊤. When the relative 

orbital dynamics is considered, the linearized equation can be written as 

 

�̇� = [
0 𝐴𝑘𝑖𝑛

−𝐻−1𝐶\𝑥𝑘𝑖𝑛 −𝐻−1𝐶\𝑥𝑑𝑦𝑛
] 𝑥 + [

0
𝐻−1

] 𝑢, 
(4.4) 
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In the above equation, 𝐶\𝑥𝑘𝑖𝑛 , 𝐶\𝑥𝑑𝑦𝑛 denote the partial derivatives of the Coriolis/centrifugal term C 

with respect to the sets of variables [𝛿𝜂𝑏,𝑣𝑒𝑐 , 𝛿𝑟𝑏\𝑡, 𝛿𝑞] and [𝛿𝜔𝑏 , 𝛿𝑣𝑏 , 𝛿�̇�], respectively. Similar to 

point mass systems, where the relative orbital motion is described by the Yamanaka-Ankersen 

equations, the presence of orbital effects shifts the eigenvalues from the origin. Unfortunately, no 

analytical methods exist for computing the terms 𝐶\𝑥𝑘𝑖𝑛 , 𝐶\𝑥𝑑𝑦𝑛  when orbital perturbations are 

considered. Consequently, the part of the dynamic matrix 𝐴 in equation (4.4) that contains those terms 

must be computed numerically. 

 

Once the linear models are obtained, uncertainties are incorporated into the model using the Linear 

Fractional Transformation (LFT) form. Specifically, during the reach and capture phase of the 

mission, the uncertainties related to mass, moments of inertia, products of inertia and center of mass 

position of the base spacecraft are included in the model. Uncertainties related to the robotic arm are 

not considered, as it is assumed that accurate calibrations can be performed before operations, which 

is a standard assumption in the robotics literature. 

The uncertain parameters can be incorporated into equation (4.4) using routines implemented in the 

MATLAB robust control toolbox. This leads to the uncertain dynamics, where the matrices become 

functions of the uncertain parameters δ: 

 

�̇� = 𝐴(𝛿)𝑥 + 𝐵(𝛿)𝑢. (4.5) 

To simplify the complexity of the uncertain model, a procedure based on the evaluation of the 

Vinnicombe metric has been adopted. This results in the following model �̇� = 𝐴𝑥 + 𝐵(𝛿)𝑢, where 

only 𝐵(𝛿) is considered uncertain. The corresponding LFT representation (for the 7-link robot 

considered in the numerical example in Section 5) contains 27 parameters, including repetitions.  

 

Up to this point, the system has been modeled with a focus on rigid bodies, which is a commonly 

adopted approach for control design as it accurately captures the primary behavior of the system. 

However, the actual behavior of the system is influenced by additional second-order effects such as 

sloshing and flexibility. Despite their significance, these effects are often overlooked in control design 

practices, as indicated by the literature review. Nevertheless, within this work, we have developed 

more sophisticated models to enable stability analysis of the system whenever feasible. 

To incorporate sloshing, we have included a spring-mass-damper equivalent model, as presented in 

[17], in the linearized equations of motion. This sloshing model requires several parameters for its 

implementation, including sloshing frequency, damping, mass, and tank positions. The state space 

formulation for the capture phase varies depending on the number of tanks of the chaser.  

As for the controller linearization, after linearization, one obtains 

{
𝛿𝑀𝑏

𝛿𝐹𝑏
𝛿𝜏

} = �̂� [

𝐼3 0 0

0 𝑅(�̅�𝑏) 0
0 0 𝐼7

] [𝐾𝑝 𝐾𝑑]

{
  
 

  
 

2𝜂𝑒,𝑏,𝑣𝑒𝑐
∗

𝑟𝑏\𝑡
𝑠𝑝 − 𝑟𝑏\𝑡

𝑞𝑠𝑝 − 𝑞

𝜔𝑏
𝑠𝑝 − 𝜔𝑏

𝑣𝑏
𝑠𝑝 − 𝑅𝑇(�̅�𝑏)𝑣𝑏
�̇�𝑠𝑝 − �̇� }

  
 

  
 

 (4.6) 

where 𝜂𝑒,𝑏,𝑣𝑒𝑐
∗ = 𝛿𝜂𝑏,𝑣𝑒𝑐

𝑠𝑝 − 𝛿𝜂𝑏,𝑣𝑒𝑐 is a three-dimensional vector containing small attitude errors of 

the base. By inspecting (4.6), one immediately sees that locally the controller behaves as a PD control 

law, with tunable gains contained in the matrices 𝐾𝑝, 𝐾𝑑.  
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4.2 Gain tuning using structured mixed-sensitivity 𝑯∞ synthesis 

 

As mentioned in the Introduction, the controller synthesis is performed using on 𝐻∞. We provide a 

brief summary of the key components of the mixed-sensitivity approach, as presented in [18]. 

Let 𝐾(𝑠, 𝜃) be a structured linear controller represented in the Laplace domain, dependent on a vector 

of tunable parameters 𝜃 ∈ ℝ𝑛𝜃, and let 𝐽𝑖(𝜃), 𝑖 = 1,… , 𝑛 be a set of 𝑛 objectives 

 

𝐽𝑖(𝜃) = ‖𝑊𝑖(𝑠)𝑆𝑖(𝑠, 𝜃)‖∞ (4.7) 

where 𝑆𝑖(𝑠, 𝜃) is the transfer function from some performance input to some performance output of 

the closed-loop plant and 𝑊𝑖(𝑠) is the corresponding frequency weight; in general, these are MIMO 

transfer matrices defined to embed desirable requirements. In the SISO case, the inverse of the 

magnitude of weight can be interpreted as the desired shape, or template, for the magnitude of the 

transfer function to be shaped.  

The mixed-sensitivity synthesis can then be cast as the problem of finding the parameter vector 𝜃 

which solves the following multi-objective optimization problem 

  

min
𝜃

max
𝑖=1,…,𝑛

𝐽𝑖(𝜃) 

subject to 
max
𝑗=1,…,𝑐

𝐻𝑗(𝜃) 
(4.8) 

 

while guaranteeing that the closed-loop system is stable. The constrained optimization (4.9) accounts 

for c inequality constraints of the form 

𝐻𝑗(𝜃) = ‖𝑊𝑗(𝑠)𝑆𝑗(𝑠, 𝜃)‖∞, 𝐻𝑗(𝜃) ≤ 1. (4.9) 

The optimization problem stated above is coherent with the one presented in [17] and implemented 

in the MATLAB systune routine. Given an open-loop plant 𝐺(𝑠), to ensure consistency in the 

computation of the norm of a linear multivariable system, it is important to normalize the inputs and 

outputs of 𝐺(𝑠). When constructing the open-loop plant is typically replaced with 𝐺′(𝑠), given by 

𝐺′(𝑠) = 𝑌−1𝐺(𝑠) 𝑈. Here, 𝑌 and 𝑈 are constant diagonal matrices of appropriate dimensions, and 

their inverses scale the inputs and outputs of 𝐺, respectively. In particular, 𝑈 is selected so that the 

maximum allowed control input is normalized to 1. This is achieved by setting the diagonal entries 

of 𝑈 as the maximum available control input for the corresponding channel. 𝑌 normalizes the output 

to 1, and its precise value is determined through an iterative procedure. The objective of the synthesis 

process is to find a controller 𝐾′(𝑠) such that 𝑢 = 𝐾′(𝑠)𝑦 solves the optimization problem (4.9).  The 

controller to be implemented on the unscaled plant is obtained as 𝐾 = 𝑈𝐾′𝑌−1. 

5 CASE STUDY: REACH and CAPTURE of a NON-COOPERATIVE TARGET 

5.1 Scenario definition 

The considered scenario involves a servicing mission in Low Earth Orbit (LEO) specifically designed 

for a small platform within a large constellation, such as the Airbus Arrow platform or OneWeb 

constellation. The target satellite is in a circular orbit at an altitude of 1210𝑘𝑚 with an inclination of 

88 degrees. This scenario is representative of other constellation satellite configurations like 

IRIDIUM, GLOBALSAR, and Starlink. The target satellite is prepared for servicing with a grapple 

interface and fiducial markers for navigation. During the mission phase, the target is considered non-

collaborative. Under nominal conditions, the target satellite is tumbling mostly about Y-axis of the 
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body frame, with angular rates of up to 2.5 𝑑𝑒𝑔/𝑠. To perform reach and capture operations, the 

chaser spacecraft synchronizes its motion with the target's approach corridor in the Local Vertical/ 

Local Horizontal (LVLH) reference frame to minimize relative motion between the chaser and the 

grapple fixture on the target. The considered simulations do not account for the synchronization 

maneuvers as they focus on the capture phase. The chaser platform is selected based on a literature 

review and simple system design criteria with the main inertial parameters reported in Table 2.   

5.2 Control synthesis results 

Prior to the synthesis, appropriate control requirements must be defined when using the mixed-

sensitivity 𝐻∞ approach. The synthesis of the gains is carried out for the fixed controller structure in 

equation (4.6) as described in Section 4.2 using the MATLAB routine “systune” which enables the 

simultaneous imposition of multiple objectives. 

Concerning the control requirements, because of the high tumbling rate of the target, the manipulator 

and base of the chaser have both to track fast reference signals; this translates into imposing 

sufficiently high control bandwidths. The multi-objective optimization problem has been formulated 

considering the following requirements:  

• Req. 1: Tracking performance requirement from base pose setpoint to base pose error. 

• Req. 2: Tracking performance requirement from joint angles setpoint to joint angles. 

• Req. 3: Control effort moderation from base and joint setpoints to base control wrench. 

• Req. 4: Control effort moderation from base and joint setpoints to arm torque commands. 

The high-level objectives can be translated using a block-diagonal frequency weight 𝑊𝑆 =

𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝑊𝑆,𝑎𝑡𝑡,𝑊𝑆,𝑝𝑜𝑠,𝑊𝑆,𝑗𝑜𝑖𝑛𝑡). We have used first order filters in the form 𝑤𝑆,⋆ = 𝐴 
1+𝑠𝑇

1+𝑠𝜏
   

implemented using the MATLAB function 

makeweight and shown in  Figure 5. We have 

imposed the same requirements as in [3] for the 

base attitude and position closed loops, namely 0.3 

and 0.2 𝑟𝑎𝑑/𝑠, respectively. The bandwidth for 

the joint angles closed loops is set to 3 𝑟𝑎𝑑/𝑠, 
almost one decade faster than the one used for 

tracking cooperative targets.  The DC gain of the 

weight has been set to 40𝑑𝐵 to impose a small 

steady state error. However, since the plant 

dynamics includes a double integrator 

(approximately, due to the presence of low 

frequency orbital modes), the value of this number 

is not particularly influent. The high frequency 

gain is set to 0.9 to reduce the overshoot in the response. For this parameter, a trial and error procedure 

has been applied to find the final value. The corresponding functions are shown in Figure 5. The 

synthesis on the nominal system (no uncertainty is considered) yields the final values of the objective 

functions reported in the first four columns of Table 1. By inspecting Req. 3 and Req. 4, we can see 

that the main limitation to the achieved performance is given by the limited control authority of the 

base (4 RWs, 0.248 Nm each). Robust stability in the presence of uncertainty (considering the values 

reported in Table 2) has been done using the robstab routine implemented in the MATLAB robust 

control toolbox (last three columns of Table 1).  A value of the stability margin equal to 𝑥 means that 

the controller can tolerate 𝑥 times the considered uncertainties. In this sense, lower bounds greater 

than 1 prove robust stability; upper bounds smaller than 1 prove that the controller is not robust to the 

uncertainties in the considered set. Exploiting the capabilities of the systune routine, a retuning with 

uncertainties has been done, yielding almost the same cost function values and control parameters.  

 

Figure 5 Frequency weights for sensitivity functions. 
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Table 1 Achieved cost function values and robustness margins. 

Req. 1 Req. 2 Req. 3 Req. 4 
Lower 

bound 

Upper 

bound 

Critical 

frequency [rad/s] 

1.55 1.55 1.55 0.007 8.56 8.98 ∞ 

 
 

Table 2 Chaser parameters and corresponding uncertainties. 

 Nominal Uncertainty 

Mass [kg] 372 ±5% 

Moments of inertia (xx, yy, zz) [kg m2] (200, 200, 140) ±10% 

Products of inertia (xy, yz, zx) [kg m2] 0   ±1 

Center of mass position (x,y,z) [m] 0  ±0.05 

 

The robustness analysis in presence of sloshing effects has been considered as well, assuming the 

presence of one tank modelled as a mass-spring-damper system with the values reported in Table 3. 

 
Table 3 Chaser sloshing modelling. 

 Tank 1 

Mass [kg] 74 

Frequency [rad/s] 0.0063 (uncertainty ±20%) 

Damping  0.001 (uncertainty ±40%) 

 

Using the robstab routine in MATLAB, the stability 

margins have been computed also in this case, 

yielding a lower bound of approximately 0.3 and an 

upper bound of 2.5. These values provide insights 

into robust stability, although no definitive 

conclusions can be drawn solely based on them. To 

address this numerical limitation, a discretization 

approach has been employed for the sloshing 

frequency and damping parameters within the 

uncertainty set. Subsequently, for each point on the 

grid, a robust analysis has been performed while 

considering the remaining parameters as uncertain. 

In the specific case being investigated, an 8𝑥8 grid 

with equally spaced points has been selected. This 

translates to a total of 64 stability margins to be 

computed (i.e., 64 evaluations of the structured singular value). It is important to note that this 

analysis is computationally intensive and feasible only for a limited number of parameters to be 

gridded, as the number of evaluations grows exponentially. The results are shown in Figure 6, thanks 

to which robust stability can be assessed. According to this analysis, sloshing is not affecting the 

performance of the closed-loop system.  

The validity of the solution has been assessed via nonlinear simulations considering the nonlinear 

rigid body dynamics of the space robot with actuators saturation and thrusters’ discretization. The 

parameters for the simulation have been randomly sampled in the uncertain set. The base performs 

station keeping with respect to the target, while the end effector moves to grasp the target as shown 

in Figure 7, in which the error between end-effector gripper and target grasping point is reported.  

Figure 6 Lower bound of the stability margin for the 

selected grid points (𝜁𝑠= damping, 𝜔𝑠 = frequency). 
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Even if the robot has to track a fast-moving target, the error for the joint variables (closely related to 

the end-effector performance) is very small (Figure 7, right). The performance achieved by the control 

law are good and the end-effector error converges to zero according to the performance requirements 

and respecting the actuator limits. The effect of thrusters discretization can be seen on the position 

error dynamics of the base (discontinuities on the derivative in Figure 8). 

 

  
Figure 8 Thrusters force time history. 

6 CONCLUSIONS 

This paper has presented the development and numerical validation of a combined control design for 

an autonomous spacecraft equipped with a robotic arm to perform the capture of a target tumbling 

object. The control law is based on the concept of computed-torque control for space-robots using a 

robust tuning procedure that allows imposing desirable performance and control moderation 

requirements. The simulation results have shown excellent performance of the developed algorithm 

in preliminary nonlinear simulation. Of note, the proposed controller has been tested successfully in 

a more realistic simulation environment [4] developed by a consortium of Italian universities within 

the project “Preparation of enabling space technologies and building blocks: GNC and Robotic Arm 

Combined Control” funded by ESA. 
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Figure 7 Relative end-effector to grasping point distance time 



 

 

ESA GNC-ICATT 2023 – D. Invernizzi, P. Ghignoni, L. Ticozzi, M. Massari, M. Lovera. 

 
15 

References  
 

[1]  A. Flores-Abad, O. Ma, K. Pham e S. Ulrich, «A review of space robotics technologies for on–

orbit servicing,» Progress in Aerospace Sciences, vol. 68, p. 1–26, 2014.  

[2]  European Space Agency, «Preparation of enabling space technologies and building blocks: 

GNC and robotic arm combined control,» 2020, Accessed online May 2023 

https://nebula.esa.int/content/preparation-enabling-space-technologies-and-building-blocks-

gnc-and-robotic-arm-combined. 

[3]  J. Teelar, E. S., M. De Stefano, W. Rackl, R. Lampariello, F. Ankersen e J. Gil-Fernandez, 

«Coupled control of chaser platform and robot arm for the e.Deorbit mission,» in 10th 

International ESA Conference on Guidance, Navigation and Control, 2017.  

[4]  F. Basana et al, «GNC and robotic arm combined control for spacecraft close proximity 

operations,» Submitted to Multibody System Dynamics, 2023.  

[5]  S. Dubowsky e E. Papadopoulos, «The Kinematics, Dynamics, and Control of Free-Flying and 

Free-Floating Space Robotic Systems,» IEEE Transactions on Robotics and Automation, vol. 

9, n. 5, pp. 531-543, 1993.  

[6]  R. Featherstone, «Rigid Body Dynamics Algorithms,» Springer, 2008.  

[7]  A. Giordano, A. Dietrich, C. Ott e A. Albu-Schaffer, «Coordination of thrusters, reaction 

wheels, and arm in orbital robots,» Robotics and Autonomous Systems, vol. 131, 2020.  

[8]  P. Apkarian e D. Noll, «Nonsmooth H-infinity synthesis,» IEEE Transactions on Automatic 

Control , vol. 51, n. 1, pp. 71-86, 2006.  

[9]  M. Wilde, S. Kwok Choon, A. Grompone e M. Romano, «Equations of Motion of Free-Floating 

Spacecraft-Manipulator Systems: An Engineer's Tutorial,» Frontiers in Robotics and AI, vol. 

5, p. 41, 2018.  

[10]  E. Papadopoulos e S. Dubowsky, «Coordinated manipulator/spacecraft motion control for space 

robotic systems,» in Proceedings of the 1991 IEEE International Conference on Robotics and 

Automation, 1991.  

[11]  D. Invernizzi, M. Lovera e L. Zaccarian, «Global robust attitude tracking with torque 

disturbance rejection via dynamic hybrid feedback,» Automatica, vol. 144, 2022.  

[12]  B. Siciliano, L. Sciavicco, L. Villani e G. Oriolo, «Robotics: Modelling, Planning and Control,» 

London: Springer-Verlag London, 2009.  

[13]  A. Liegeois, «Automatic Supervisory Control of the Configuration and Behavior of Multibody 

Mechanisms,» IEEE Transactions on Systems, Man, and Cybernetics, vol. 7, n. 12, pp. 868-

871, 1977.  

[14]  J. Wang, Y. Li e X. Zhao, «Inverse Kinematics and Control of a 7-DOF Redundant Manipulator 

Based on the Closed-Loop Algorithm,» International Journal of Advanced Robotics Systems, 

vol. 7, n. 4, pp. 1-10, 2010.  

[15]  T. Yoshikawa, «Manipulability of Robotic Mechanisms,» The International Journal of 

Robotics Research, vol. 4, n. 2, pp. 3-9, 1985.  

[16]  P. Rocco, «Control of industrial robots - Kinematic redundancy,» Lecture Notes, Politecnico di 

Milano.  

[17]  F. Ankersen, «Guidance, Navigation, Control and Relative Dynamics for Spacecraft Proximity 

Maneuver», Phd Thesis, 2010. 

[18]  P. Apkarian,, P. Gahinet e C. Buhr, «Multi-model, multi-objective tuning of fixed-structure 

controllers», in European Control Conference (ECC), 2014.  

 


