
Safety-Critical Software Process Assurance using LLMs

Peter Seres 2025.09.23

Our Team

AstraLabs

Dominik Kerschat

Managing Director

- Avionics development
- UAVs
- ❖ MBSE
- Autonomous vehicles

Mark Melczer

Head of Technology

- ◆ GNC
- Software development
- Artificial-intelligence
- Cryptography

Peter Seres

Head of Product Development

- ◆ GNC
- Systems engineering (ARP4754, ARP4761)
- Software Certification (DO-178C)

CEO Statements

"The programming language is now human. You should be able to program something by describing what you want to do."

Jensen Huang Nvidia CEO "Within the next five years, 95% of code will be generated by AI."

Kevin ScottMicrosoft CTO

"'Virtual employees' could join the workforce as soon as this year."

Sam Altman OpenAl CEO

CEO Statements

"'Virtual employees' could join the workforce as soon as this year."

- Strict standards and conservative processes.
- Engineers will not be replaced by Al agents, but we cannot dismiss the power of LLMs.

Let's investigate what we can actually automate safely and responsibly

Introduction

Outline

7 - Risks of LLM Use

2 - LLM Capability

3 - Integration Proposal

"What are the risks associated with AI-generated content entering the development life cycle?" "How can we integrate the current capability of LLMs into the ECSS / DO-178C software development processes?"

"How can we integrate the current capability of LLMs into the ECSS / DO-178C software development processes?"

- → What happens to artifacts in the life cycle environment generated by AI, but not tracked?
- → Worst case scenarios

- → How good are LLMs?
- → What tasks can they automate?
- → How reliable are they?

- → Use case examples
- How do we integrate them into the PA workflow?
- → Application Overview

Part 1 - Risks of Unstructured LLM Use

Traceability is needed

Developers and engineers may use LLM-based tools to generate:

Requirements

Code

Tests

Documentation

(In Analysis

Risk

If no traceability

no clear distinction between human-created and Al-created artifacts.

compliance and verification risks in safety-critical domains To ensure that the non-qualified tool is used properly:

→ Full traceability of Al-generated data is required

→ Review status tracking of Al advisories is required

Otherwise Tool Qualification Levels (DO-330) are needed – currently not feasible for LLMs.

Part 1 - Risks of Unstructured LLM Use

User Story Example

Alice automatically generates unit tests from requirements, in order to accelerate her work.

Code under test

```
temp_status_t Temp_ConvertAdcToTempDeciC(uint16_t adc, int16_t *t);
```

Generate snippet

```
int16_t t;
(void)Temp_ConvertAdcToTempDeciC(1000U, &t);
assert(t == oracle_by_calling_system_under_test(1000U));
```

→ The assert never fails.

Risk with auto-generated test cases from an LLM:

they may look valid but actually fail to catch real errors, because they just echo the implementation rather than challenge it.

(Non-specialized) LLMs are optimized to satisfy user prompts, and not necessarily to produce **correct**, **verifiable outputs**.

Part 1 - Risks of Unstructured LLM Use

Reasoning Models Risk

In-context Scheming

Research [5] with reasoning models reveals that reasoning LLMs are:

- Highly skilled at convincing users their output is correct.
- Capable of purposeful deception to satisfy user expectations.

In safety-critical systems, persuasive ≠ correct

Dedicated models with specialized objective functions are needed.

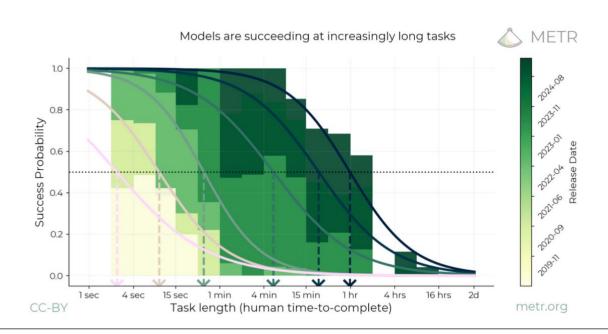
Risks in Building the Context

Context Risks

- 1. Certain elements in the context may get lost, depending on the location [8]
- 2. If the agent is provided with all information in a giant context, it will lose track of key information [9]

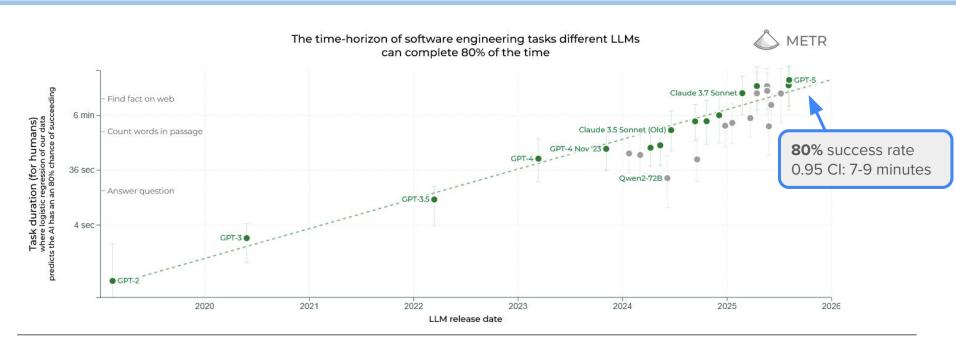
Automation based on degraded context may:

- Overlook critical safety requirements.
- Mix irrelevant with essential data.
- Produce unverifiable results.



The context for each task automation must be curated from the project data and verified.

Part 2 - LLM Capability


How good are LLMs today?

Metric for real-world impact – Tasks duration for humans

How good are LLMs today?

Metric for real-world impact – Tasks duration for humans

Part 2 - LLM Capability

Task Automation Range

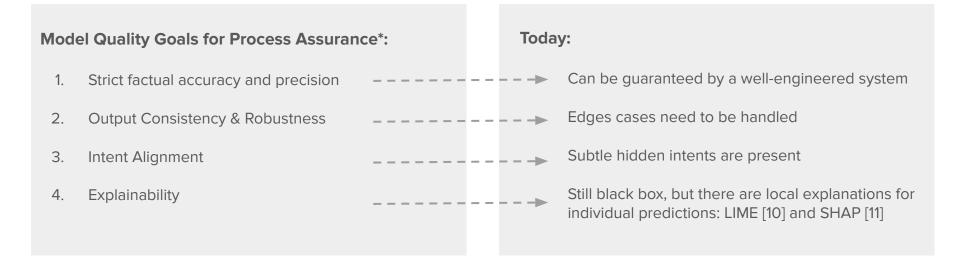
What activities can be (at least partially) automated today?

Ă	Planning phase	2	Test Case Generation
	Document Generation	2 Ξ	Test Generation
^	Requirements Analysis & Refinement	ڭ	Review of Tests
℃	Requirement Validation	\Box	Hardware–Software Integration
\mathfrak{S}	Traceability Analysis	<u>Oo</u>	Problem Report Analysis
O	Code Generation		Configuration Management
0	Code Review and Analysis	\otimes	Process Assurance

Part 2 - LLM Capability

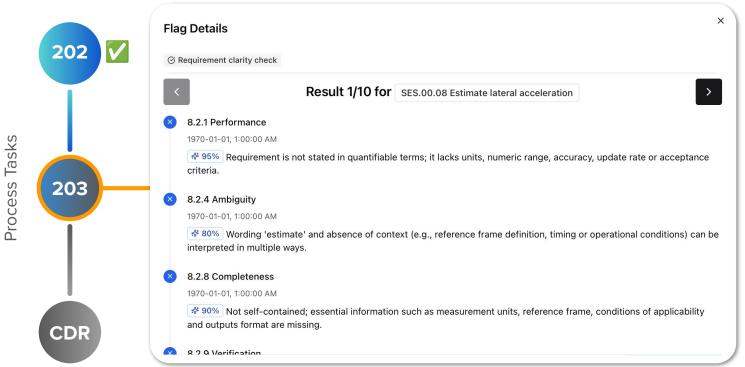
Task Automation Range

What activities can be (at least partially) automated today?


\Box	Planning phase	3	Test Case Generation
	Document Generation	9 ≡	Test Generation
√	Requirements Analysis & Refinement	芯	Review of Tests
2	Requirement Validation	⊖	Hardware–Software Integration
G	Traceability Analysis	<u>Oo</u>	Problem Report Analysis
O	Code Generation		Configuration Management
0	Code Review and Analysis	\$	Process Assurance

LLM Quality - How good are they?

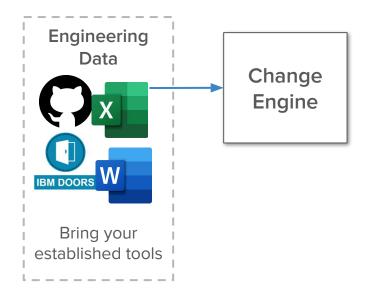
Model Quality Goals for Process Assurance*:


- 1. Strict factual accuracy and precision
- 2. Output Consistency & Robustness
- 3. Intent Alignment
- 4. Explainability

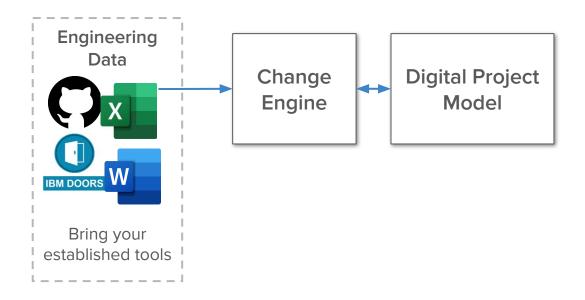
LLM Quality - How good are they?

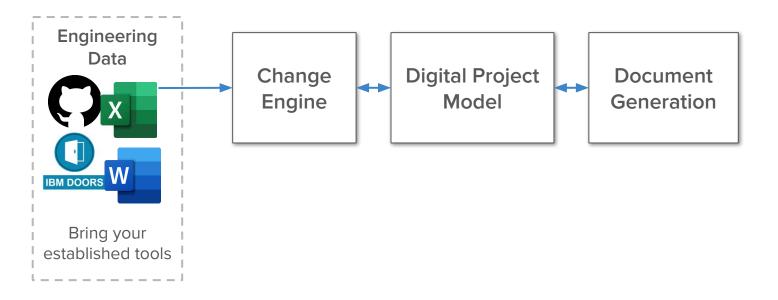
Part 3 - Integration Proposal Continuous LLM-assisted Process Assurance

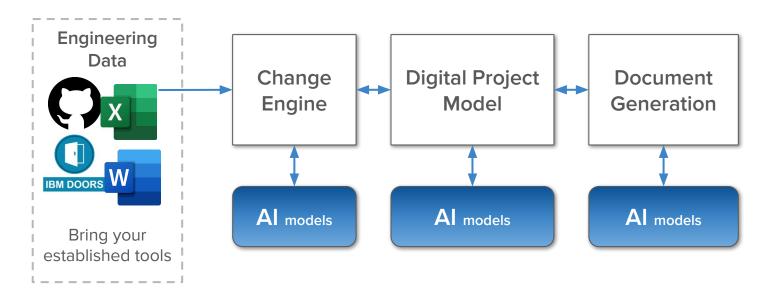
COMET - Automated Process Assurance

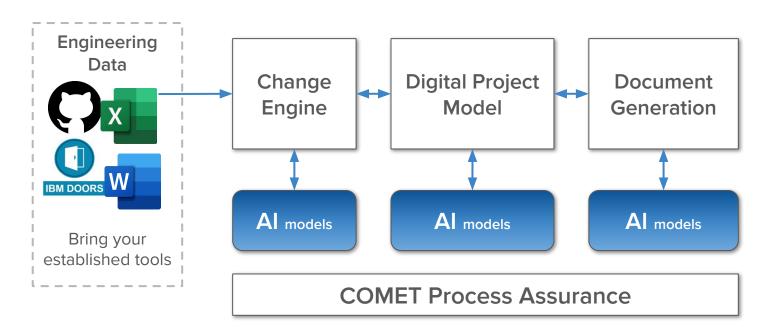


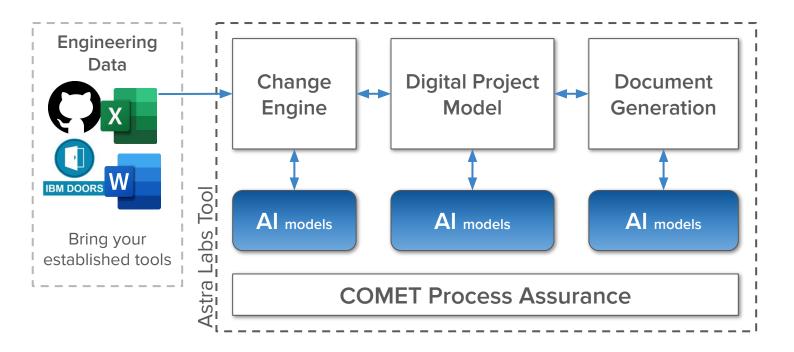
Automated requirement validation example

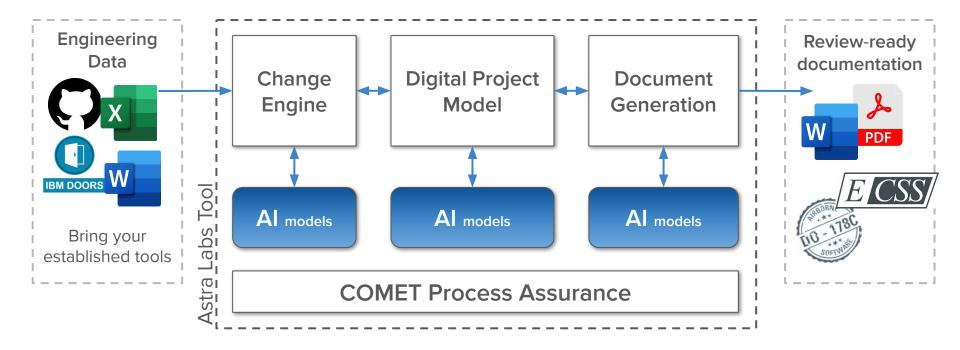


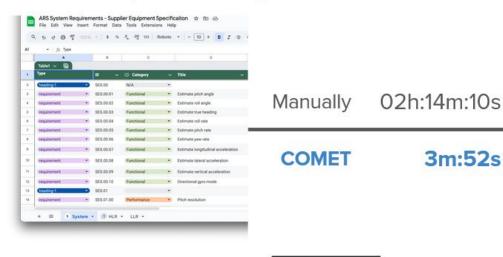












Compliance Check

Check Requirements against ECSS Standards

Benefits

Traditional DO-178C Benefits (AFuzion Whitepaper) [6] → Achieved Faster

Fewer Bugs & Code Iterations

Rigorous requirements to reduce late-stage defects.

→ LLMs can automate requirement validation & regression checks.

→ **LLM-assisted traceability mapping**, ensures requirement-test-code alignment.

Greater Consistency

Iterations require artifact updates

→ Continuous LLM checks improve project consistency

Lifecycle Cost Efficiency

Reusable checklists and Al pipelines improve later project costs

→ Compounds benefits by automating assurance tasks

Conclusion

Summary

7 - Risks of LLM Use

2 - LLM Capability

3 - Integration Proposal

- → Full traceability of all Al-generated artifacts
- → Specific, independent models
- → Verified context generation

- → Wide array of tasks can be automated.
- → LLMs are getting more reliable over time.
- → Al-powered continuous process assurance
- → LLM usage as a tool must enter the software PAP.

Thank you for listening!

Conclusion

Talk to us

www.astralabs.de

Peter Seres <u>peter.seres@astralabs.de</u>

Conclusion

References

- [1] RTCA (2011). DO-178C: Software Considerations in Airborne Systems and Equipment Certification. RTCA, Inc rtca.org (paywalled)
- [2] ECSS (2025). ECSS-Q-ST-80C Rev.2: Space product assurance Software product assurance. ecss.nl
- [3] ECSS (2024). ECSS-E-HB-40-02A: Machine Learning Handbook. ecss.nl
- [4] Kwa et al. (2025). Measuring Al Ability to Complete Long Tasks (arXiv:2503.14499). arXiv, metr.org/blog
- [5] Meinke et al. (2024). Frontier Models are Capable of In-Context Scheming (arXiv:2412.04984). arXiv
- [6] Hilderman (n.d.). DO-178C Costs Versus Benefits (AFuzion white paper). afuzion.com
- [7] Yang et al. (2024). On the Evaluation of Large Language Models in Unit Test Generation (arXiv:2406.18181). arXiv
- [8] van Linschoten (2025). Prompt Engineering for LLMs, Ch. 6 MLOps.systems. mlops.systems
- [9] Hong, Troynikov & Huber (2025). Context Rot: How Increasing Input Tokens Impacts LLM Performance (Technical report). GitHub
- [10] Lundberg & Lee (2017). A Unified Approach to Interpreting Model Predictions (NIPS 2017, Vol. 30, pp. 4765–4774). arXiv
- [11] Ribeiro et al (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier (KDD 2016). arXiv