

### **EVALUATION OF AN NEO CLOSE APPROACH FREQUENCY INDEX FOR PUBLIC/MEDIA RELEASE PURPOSES**

Speaker: Juan L. Cano (PDO) Co-authors: G. Valletta (UniNa), D. Oliviero (PDO), G. Fasano (UniNa), R. Opromolla (UniNa), M. Micheli (PDO), D. Koschny (PDO)

7<sup>th</sup> IAA Planetary Defense Conference - 30/04/2021

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

## **NEO CLOSE APPROACHES IN THE MEDIA**



### Asteroid close approach: NASA gearing up as asteroid to pass closer than the Moon

NASA is on alert at as a 'close approat Moon.

DOOMSDAY DODGED Apophis 'God of Chaos' asteroid could hit Earth in over 100 years – as Nasa reveals it will 'miss' in 2068

WHAT THE TRUCK Pickup truck-size ASTEROID came less than 250 miles from hitting Earth, Nasa reveals

Charlotte Edwards, Digital Technol 29 Mar 2021, 11:06 | Updated: 29 Ma



Jon Lockett 17 Nov 2020, 19:28 | Updated: 17 Nov 2020, 19:33

NASA has removed a huge 17 Nov





TEROID the size of a pick-up truck has just skirted within 240 miles th, NASA has revealed.

eek's very close encounter set a record for the nearest known space ofly past the planet without actually hitting.

### Skyscraper-sized asteroid travelling at 11,000mph will zip past Earth at a distance of 3.1 million miles this weekend

- The asteroid has been called 163348 (2002 NN4) and was first spotted in 2002
- It will make

The 1,870ft: NASA WARNING Asteroid the size of the
It poses no r

\*\*\*\* world's tallest building to zip past Earth at 56,000mph this week

Harry Pettit, Senior Digital Technology and Science Reporter 24 Nov 2020, 15:14 | Updated: 24 Nov 2020, 15:15

A GIGANTIC asteroid is set to zip past Earth this week, according to Nasa space debris trackers.

The rock is travelling at over 56 000 mph (90 000 kph) and at up to 820 metres (2 tallest bu to miles to miles the mile to mil

AN ASTEROID big enough to be dubbed "potentially hazardous" but considered safe by NASA, has been photographed dashing through the solar system.

### ▙ ▓▌▝▀▖▝┿▖▋▋▝▀▖▓▋▝▋▌▋▋▋▓▌▓▌▓▌▋▓▌▋▋▓▌▓▌▓▌▓▌▓▌▓▌▓▌▓▌▌▖▖▖▖

### FREQUENCY OF A CLOSE APPROACH



- Given the close approach of an NEO to the Earth at distance  $d_{CA}$ , what is the frequency (or the period) of such event?
- A similar question has been responded in the past: the one associated to the NEO impact frequency

Why not extending such concept to the close approaches?

- Impact frequency has been extensively discussed in the literature in the last 50 yr
- The frequency is dependent on the NEO population distribution

### **IMPACT FREQUENCY VS POPULATION MODEL**





There is a direct relation between a given population of NEOs and the impact frequency with Earth:

 $f_0 = k N$ 

We need a function  $f_{CA}$  that allows the extension of the concept to any close approach conditions.

Source: Harris, PDC-2019

## VARIABILITY WITH THE DISTANCE TO EARTH

 Assuming that the flux of NEOs is roughly uniform in the proximity of the Earth, the number of close approaches with the Earth will increase quadratically with the distance:

$$f_{CA}(N,b) = f_0(N) \left(\frac{b}{b_0}\right)^2$$

*b* is the b-plane impact parameter

• Taking into account the gravitational focusing due to the Earth:

$$f_{CA}(N, d, v_{\infty}) = f_0(N) \left(\frac{d}{d_0}\right)^2 \left[\frac{v_{esc}^2 + v_{\infty}^2}{v_{esc0}^2 + v_{\infty}^2}\right]$$

d is the CA distance  $v_{\infty}$  is the infinite CA velocity  $v_{esc}$  is the Earth escape vel.



### **NEO POPULATION DISTRIBUTION MODEL**



- Several NEO population models have been proposed in the last 25 years
- For our computations we decided to select:
  - The Granvik model (2018) for  $H \le 25$
  - A log-linear extrapolation of that model for  $25 < H \le 28.5$

 $N(\leq H) = 802,404 \times 10^{0.6434 (H-25)}$ 

• Another log-linear extrapolation with a slope better fitted to smaller asteroid fluxes for H > 28.5

 $N(\leq H) = 143,315,474 \times 10^{0.5151(H-28.5)}$ 

### **NEO POPULATION DISTRIBUTION MODEL**





### → THE EUROPEAN SPACE AGENCY

÷

 $\geq$ 

÷

### THE IMPACT FREQUENCY CONSTANT



- Proposed values:
  - Shoemaker (1979):  $k = \sim 2.5 \times 10^{-9} yr^{-1}$
  - Brown (2002):  $k = 2 \times 10^{-9} yr^{-1}$
  - Tricarico (2017):  $k = 4 6 \times 10^{-9} yr^{-1}$
  - NASA (2017):  $k = 1.66 \times 10^{-9} yr^{-1}$
  - NEOPOP (2020):  $k = 1.89 \times 10^{-9} yr^{-1}$
- We decided to use  $k = 1.66 \times 10^{-9} yr^{-1}$ , as it was computed over a much larger propagation time (tens of thousands of years)

### THE CLOSE APPROACH INDEX



• In order to render the final values more manageable:

 $CAI = \log_{10}(f_{CA}(N, d, v_{\infty}))$ 



### **EXAMPLE: NEOCC CLOSE APPROACHES**



 Evaluation of close approaches in the last month and in the next year, as provided in NEOCC's close approach list: <u>https://neo.ssa.esa.int/close-approaches</u>

| Object designation | Absolute<br>magnitude | Close<br>approach<br>date | CA<br>distance<br>(au) | Infinite<br>velocity<br>(km/s) | CA<br>frequency<br>(y <sup>-1</sup> ) | Close<br>approach<br>index | Close approach<br>ranking |
|--------------------|-----------------------|---------------------------|------------------------|--------------------------------|---------------------------------------|----------------------------|---------------------------|
| 2021 DM            | 26.1                  | 2021-02-28                | 0.0327                 | 10.2                           | 1.82E+03                              | 3.26                       | Very frequent event       |
| 2021 ET1           | 24.6                  | 2021-02-28                | 0.0457                 | 9.0                            | 3.00E+02                              | 2.48                       | Very frequent event       |
| 2021 EH2           | 26.2                  | 2021-02-28                | 0.0456                 | 5.8                            | 1.92E+03                              | 3.28                       | Very frequent event       |
| 2011 DW            | 22.7                  | 2021-03-01                | 0.0361                 | 13.6                           | 3.05E+01                              | 1.48                       | Very frequent event       |
| 2021 EU3           | 27.1                  | 2021-03-01                | 0.0122                 | 4.7                            | 3.77E+02                              | 2.58                       | Very frequent event       |
| 2021 EE            | 25.8                  | 2021-03-02                | 0.0119                 | 16.9                           | 2.36E+02                              | 2.37                       | Very frequent event       |
| 2011 EH17          | 24.9                  | 2021-03-02                | 0.0342                 | 16.6                           | 4.90E+02                              | 2.69                       | Very frequent event       |
| 2021 EE1           | 26.0                  | 2021-03-02                | 0.0473                 | 9.1                            | 2.88E+03                              | 3.46                       | Very frequent event       |
| 2021 EC            | 27.8                  | 2021-03-02                | 0.0044                 | 8.7                            | 3.37E+02                              | 2.53                       | Very frequent event       |
| 2021 EA            | 28.0                  | 2021-03-02                | 0.0006                 | 9.9                            | 1.17E+01                              | 1.07                       | Very frequent event       |
| 1999 RM45          | 19.8                  | 2021-03-02                | 0.0196                 | 20.0                           | 1.58E+00                              | 0.20                       | Frequent event            |
| 2016 DV1           | 24.8                  | 2021-03-03                | 0.0053                 | 18.3                           | 1.06E+01                              | 1.03                       | Very frequent event       |

And many more lines in the table...

### **EXAMPLE: NEOCC CLOSE APPROACHES**



• Summary of results (cut-off on 2021-03-29):

| Evaluation          | Recent CAs | Upcoming CAs |  |  |
|---------------------|------------|--------------|--|--|
| Very frequent event | 124        | 129          |  |  |
| Frequent event      | 7          | 10           |  |  |
| Infrequent event    | 1          | 5            |  |  |
| Rare event          | 0          | 1            |  |  |
| Very rare event     | 0          | 0            |  |  |
| Total               | 132        | 145          |  |  |

### **EXAMPLE: NEOCC CLOSE APPROACHES**



### • Summary of results (cut-off on 2021-03-29):

| Object designation | Н    | Close<br>approach<br>date | CA<br>distance<br>(au) | Infinite<br>v elocity<br>(km/s) | CA<br>frequency<br>(y <sup>-1</sup> ) | Close<br>approach<br>index | Close approach<br>ranking |
|--------------------|------|---------------------------|------------------------|---------------------------------|---------------------------------------|----------------------------|---------------------------|
| (231937) 2001 FO32 | 17.6 | 2021-03-21                | 0.0135                 | 34.4                            | 1.29E-01                              | -0.89                      | Infrequent event          |
| 2016 AJ193         | 18.7 | 2021-08-21                | 0.0229                 | 26.2                            | 9.53E-01                              | -0.02                      | Infrequent event          |
| 2019 XS            | 23.8 | 2021-11-09                | 0.0038                 | 10.7                            | 8.45E-01                              | -0.07                      | Infrequent event          |
| (4660) Nereus      | 18.3 | 2021-12-11                | 0.0263                 | 6.6                             | 2.64E-01                              | -0.58                      | Infrequent event          |
| (163899)2003 SD220 | 17.7 | 2021-12-17                | 0.0363                 | 5.6                             | 2.26E-01                              | -0.65                      | Infrequent event          |
| (7482) 1994 PC1    | 16.6 | 2022-01-18                | 0.0132                 | 19.6                            | 6.23E-02                              | -1.21                      | Rare event                |
| (138971) 2001 CB21 | 18.4 | 2022-03-04                | 0.0328                 | 12.0                            | 9.34E-01                              | -0.03                      | Infrequent event          |
| Apophis            | 18.9 | 2029-04-13                | 0.000254               | 7.42                            | 7.03E-05                              | -4.15                      | Very rare event           |

12



- We are proposing to the community to use an objective index to evaluate the relative importance of a given close approach
- Such index is based on the current NEO population models
- It expands from the concept of impact frequency with the Earth
- Uses the *H* of the object and the **close approach data**
- It yields 5 infrequent events and 1 rare event in one year
- Apophis close approach in 2029 will be a very rare event
- We plan to include the evaluation of this index in **NEOCC's CA page**

## eesa

# THANK YOU!

→ THE EUROPEAN SPACE AGENCY

 $\bullet$ 

### **ERROR ANALYSIS**



- Error in  $H/\Delta H = +0.1$  magnitudes implies:
  - $\Delta CAI = +0.031$  for H = 20
  - $\Delta CAI = +0.064$  for H = 25
  - $\Delta CAI = +0.0515$  for H = 30
- Error in *N*:
  - $\Delta N = +10\%$  implies  $\Delta CAI = +0.041$
  - $\Delta N = +50\%$  implies  $\Delta CAI = +0.176$
- Error in CA distance /  $\Delta d_{CA}$  = +50% implies:
  - $\Delta CAI = +0.299$  for a  $d_{CA} = 0.0001$  au
  - $\Delta CAI = +0.345$  for a  $d_{CA} = 0.001$  au
  - $\Delta CAI = +0.351$  for a  $d_{CA} = 0.01$  au