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Modern estimates suggests airburst-scale 
meteors occur ~tens to hundreds of times per 

year on Earth! (Brown+ 2002)
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● Airburst height (provides atm. density) + impact velocity → strength estimate

From these calculations, meteors seem to be much more weak than their meteorite counterparts!
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This seems to follow Weibull (1951) theory for size-dependent strength in brittle materials.
● i.e. the statistical distribution of flaws results in larger bodies with larger (and weaker) flaws.

We aim to measure Weibull parameters to help explain and model meteor breakup.

Weibull theory



Weibull theory seems to work!

Meteors

Meteorites
The flaw distributions at small scales extrapolated 
nicely to large scales, in agreement with inferred 
strengths from airbursts.

We now have new data from Aba Panu (L3)!

Image credit: Cotto-Figueroa+ (2016)



Results for Aba Panu (L3)

Cotto-Figueroa+ (2016)
Md Fazle Rabbi+ (submitted)
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Tamdakht (H5) 11.2 8.8 19.2 3.5 9.5* 1.7 ~25-250

Allende (CV3) 6.1 7.8 15.6 2.9 23* 4.5 ~24-58

Aba Panu (L3) 31.3 26.5 55.5 3.4 3.8 5.9 ~261-578

*Flynn et al., 2018

Strong & homogeneous

Weak & homogenous (& porous)

Weak & heterogeneous

Image credit: Cotto-Figueroa+ EPSC/DPS 2019
Image credit: Woreczko Jan & Wadi



Results for Aba Panu (L3) seems consistent with breakup 
altitude and imperfect sampling.

Ram pressure estimates predict a slightly weaker 
compressive strength than predicted by Weibull.

However…
● Accounting for vaporization and imperfect 

sampling readily accounts for this difference.

This suggests the Weibull assumption used throughout 
the impact modelling community should be robust 
assuming appropriate material parameters!
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compressive strength than predicted by Weibull.

However…
● Accounting for vaporization and imperfect 

sampling readily accounts for this difference.

This suggests the Weibull assumption used throughout 
the impact modelling community should be robust 
assuming appropriate material parameters!

Using the SPHERAL++ tool developed at LLNL, we’re 
starting to perform compression test validation and 
eventual full-scale simulation.
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Thank you!
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