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ABSTRACT 

 

Potentially Hazardous Object (PHO) refers to the near-Earth object which 

has a minimum orbital intersection distance with Earth of less than 0.05 AU. 

These objects include binary asteroid systems e.g. 1999kw4. Researchers has 

studied a series of deflection schemes, such as gravity tractor, kinetic impactors, 

laser beaming and low-thrust deflection via electric propulsion or solar sails. 

Gravity tractor is a long-term hovering project, which uses the mutual 

gravitational force between a hovering spacecraft and a target object as a 

towline. Comparing with hovering in a unitary asteroid, both the superposition 

of the gravity field and the evolution of the binary asteroid increase the 

uncertainty of this dynamic system. The traditional control theories may be 

failed when they face this highly uncertain system. This paper proposes a novel 

hovering control method based on reinforcement learning (RL) with 

asynchronous methods for achieving the aim of adapting the uncertain 

environment. 

In this paper, the gravity field of the binary asteroid system is modeled as 

double ellipsoids model which the system’s exterior potential can be 

superposed from both ellipsoids. The triaxial ellipsoid’s gravitational potential 

energy is calculated both by an elliptical integral and by a second degree 

second order spherical harmonic series, which shows the discrepancy of the 

environments. In order to retain the general feature of the gravitational field, the 

ellipsoid is chosen as gravity-best-fit ellipsoid whose gravity potential is 

consistent with the irregular asteroid’s gravity potential in a distance. The 



spacecraft plays the role of the agent in RL. The control is determined by the 

policy which is composed of actor and critic, where artificial neural network 

(ANN) is employed as the parameter description. An asynchronous method is 

employed to train the parameter of the ANN in this paper. The model is trained 

during the interaction between the agent and the environment while RL 

algorithm makes the agent adapt different environment and evolve with the 

variation of the environment. To demonstrate that the controller can adapt the 

change of the dynamics and learn online, the training environment differs from 

the test environment in numerical experiments. Simulation shows that the 

spacecraft can achieve and maintain the hovering state in spite of the poor 

precision of the training environment. The position error can be reduced to 1m 

in a changing uncertain environment. Further more, the control can be improved 

using the data which is produced during this long-term mission.  

 

Introduction 

Potentially Hazardous Object (PHO) on a collision course could lead to a 

widespread damage. The Chelyabinsk meteor proved that the risk of impact 

upon the Earth by PHO is possible. The NASA Planetary Defense Coordination 

Office (PDCO) was established in 2016 to address and plan response to the 

asteroid impact hazard. To alter its trajectory, human has investigated a variety 

of schemes, including Gravity Tractor(GT)[1], laser beaming and kinetic-energy 

impactor. Compared with the others, GT is a reliable method because this 

deflection method is insensitive to the structure, surface properties, and rotation 

state of the asteroid. 

GT is proposed as a low-energy long-term asteroid deflection concept using 

the mutual gravitational force between a hovering spacecraft and a target 

asteroid as a towline to alter its trajectory. The gravitational coupling/towing 

concept has been studied previously, this paper primarily focuses on the 

dynamics and hovering control of GT spacecraft. As a long-term mission, the 

control concept should be fuel-efficient and maintain a distinguish accuracy. 

Wie[2] demonstrates the practical hovering control feasibility of an SSGT 

spacecraft for towing NEAs. Wie[3] proposed a system of multiple gravity 

tractors in halo orbits, which produced larger velocity change and provided 

multispacecraft redundancy. Furfaro[4] employed two-sliding control to hover in 



a body-fixed Cartesian coordinate frame of a uniformly rotating asteroid. A 

homogeneous controller is modified to trade off precision and propellant 

consumption. The time-varying environment in binary asteroid systems leads 

to many technically challenging astrodynamic control problem. Additional 

perturb produced by the rotation state of the binary asteroid and the uncertain 

gravitational field could invalidate the stability of the traditional control concept. 

Therefore, it is interesting to develop a novel control to solve these problems. 

Reinforcement learning(RL) has achieved great progress in control area. It 

also has been employ to solve the astrodynamic control problem already. 

Guzzetti[5] used RL theory to design an orbit station keeping control algorithm 

within a chaotic environments. They noted that the RL can not only achieve the 

effect that are as accurate as current algorithm, but also adapt to uncertainties. 

The RL does not require an analytical description of the system dynamics, 

where some algorithm need to model the dynamics as function. They 

suggested that the RL could continue learning online to adapt to uncertainties. 

Gaudet[6] proposed to use RL to hover near a small body and demonstrate the 

robustness of the controller. Using Monte Carlo simulation, they demonstrate 

that the controller is fairly fuel-efficient and robust even in the situation where 

the external forces acting on the spacecraft are a significant fraction of the 

spacecraft’s maximum thrust capabilities. 

In this work we primarily focus on the GT hovering control problem, we 

propose to use an asynchronous RL to achieve and maintain the hovering state 

in a binary asteroid systems. The RL controller described in this paper will 

quickly drive the spacecraft to achieve and maintain the hovering state without 

establishing an analytical description of the system dynamics to function. We 

investigate the influence of the dynamics changing and demonstrate that RL 

controller could reduce the degeneration of the controller which is produced by 

the dynamics changing. 

The rest of the paper is organized as follows. In Sec.II, the gravitational field 

of the binary asteroid system is formulated. In Sec.III, the principles behind the 

Asynchronous Methods for Deep Reinforcement Learning are introduced. In 

Sec.IV, the behavior of the proposed controller is illustrated. We investigated 

that the algorithm could continue learning online to adapt to the change of the 

environment. Some implementation details are described in Sec.V.  



Conclusions are drawn in Sec. VI. 

Hovering Problem Formulation 

Full Two-Body Problem(F2BP) refers to considering the shape, mass 

distribution and orientation of the asteroids when we investigate the dynamics 

of the binary asteroid system. The double ellipsoid model is a common model 

to describe the F2BP. The study of the dynamics of a massless body in the 

F2BP is referred as the Restricted Full Three Body Problem (RF3BP). 

The equations of motion of a particle in the inertial coordinate are established 

first. Because this paper focuses on the hovering control problem, we assume 

that the barycenter of the binary asteroid system is fixed in the inertial 

coordinate while it has orbit motion in reality. The exterior potential of the system 

can be superposed from both ellipsoids, and we can obtain the equations of 

motion of the gravity tractor 
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Fig.1 A conceptual illustration of a binary asteroid system gravity tractor 

The binary asteroid is illustrated in Fig.1. The motion of binary asteroids can 

be modeled as the planar problem. Assume the barycenter of the system can 

be considered to be coincident with its center of orbit O .Woo[7] has suggested 

that four generalized coordinates 1 2, , ,cR    fully define the rigid-body planar 



motion of the two bodies around O  . The origin of the body-fixed frame 

i i i iC x y z ,for 1,2i =  is located at the center of mass of the respective body. The 

ix -axes of the body-fixed frame are assumed to be aligned along the minimum 

principal axes of inertia of the bodies. The iz -axes are assumed to be aligned 

along the maximum principal axes, which is normal to the orbital plane as well. 

The distance between 1C  and 2C is denoted by cR . Vector c
R , joining the two 

centers of mass, is oriented at an angle  with respect to the inertial frame. The 

relative attitude of the bodies with respect to c
R are defined by angles 1 and

2 .The binary asteroid system includes two triaxial ellipsoid. 

Triaxial ellipsoid model is a common asteroid gravity field model. Hu[8]has 

suggested that a uniformly rotating arbitrary second degree and order gravity 

field can be described through second degree and order gravity coefficients 
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where   is the gravity constant of the asteroid, 2 2 2r x y z= + + is the distance 

between the gravity tractor and the barycenter of the asteroid, 20 22,C C are the 

gravity coefficients. 

Although the second degree and order gravity field can be applied in arbitrary 

mass distribution, we assume that the asteroid is an ellipsoid with semi-major 

areas     along its x, y, and z axes, which is same as Hu[8]. 

The moments of inertia of the ellipsoid is 
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The second degree and order gravity coefficients are directly related to the 

principal moments of inertia of the body 
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In this section, the gravitational field of the binary asteroid system is 

established. The binary asteroid system is considered as two triaxial ellipsoid. 



In order to improve the computation efficiency, we employ the second degree 

and order gravity model rather than the elliptic integrals[9] to describe the 

gravitational field of the triaxial ellipsoid. 

Hovering Control of Gravity Tractor based on Asynchronous 

Advantage Actor-Critic(A3C) 

  The RL describes a scenario where an agent interacts with an environment 

over a number of discrete time steps[10]. At each time step t , the agent can 

acquire a state ts from the environment and select an action ta according to its 

policy   , where    is a mapping from state ts   to action ta  . In return, the 

environment delivers the next state 1ts +  depend on the state transition and a 

scalar reward tr  according to the reward function. The process continues until 

reaching a certain time or a terminal state. The sequence of the state and action 

called episode  . 

The goal of the RL is acquiring an optimal policy which maximizes the return 

from each state ts . The return of the episode which starts at time step t  
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is the total accumulated reward from each time step t   with discount factor 

( 0,1  . Note ( )R   is the return of the episode  . 

  Assume that both the state transition and the policy are random, the 

probability along the episode   under policy    with initial state probability  

distribution function 0  is 
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where ( )1 ,t t tP s s a+
 is the probability of state transition which transferring the 

state ts   to the state 1ts +   when taking action ta  , ( )t ta s   is the probability 

which the policy   choose action ta  under the state ts . 

The expectation of the return under the policy   is 

 ( ) ( ) ( ) ( )J P R E R 


    = =     (7) 

Consequently, the RL problem can be formulated to 

 ( )* arg max J


 =  (8) 

where * is the optimal policy, ( )J  is the target function. 

Value functions are important in RL theory. The action value 



 ( ), ,t tQ s a E R s s a =  =    (9) 

is the expected return for selecting action a  in state s and following policy  . 

Similarly, the value of state s  under policy   is defined as 

 ( ) t tV s E R s s =  =    (10) 

and is simply the expected return for following policy    from state s  . 

According to the role of the value function when making decision, the RL 

method can be divided into value-based methods and policy-based methods. 

In value-based RL methods, the action value function is represented using a 

function approximator, such as a neural network. The action is chosen to 

acquire a maximum action value in current time step. In contrast to value-based 

methods, policy-based methods directly parameterize the policy ( )a s  and 

update the parameters    by performing, typically approximate, gradient 

ascent on ( )J   

 ( )1 tt t J     + = +   (11) 

where ( )
t

J   is the policy gradient with parameter   
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The expectation can be estimated by sampling during the interaction rather 

than calculating directly. The estimated value is 
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where N  is the number of the episode. 

An actor-critic(AC) architecture is established by using an action value 

function to replace the return 
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where the value function Q  is approximated by a critic network. 

The critic network is updated according to the loss function, which is the 

Temporal-Difference Error(TD-Error) 
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The training process of the neural network has been a problem for machine 

learning. The added network increases the difficulty of the training process. 

Baseline makes the training process more stable. The state value function is 

usually employed as the baseline. The policy gradients can be calculated in 

equation(16) 
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where ( ) ( )n n n

t t tQ s a V s  
−  is called advantage function. 

There are two value function in equation(16), which requires extra network. 

According to the relationship between the state value function and the action 

value function 
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The action value function can be approximated by the state value function 
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Substituting equation(18) into equation (16) can obtain the policy gradients 

of the Advantage Actor-Critic(A2C)method 
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The loss function of the critic is 
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Google has proposed a multi-threaded asynchronous method[11] for 

optimizing the neural network controller. They use asynchronous actor-learners 

running in parallel on multiple CPU threads on a single machine to explore 

different parts of the environment. This method no longer relies on experience 

replay for stabilizing learning process. 

Figure.2 shows a conceptual illustration of Asynchronous Advantage Actor-

Critic(A3C). After the agent in each thread interacts with the environment to 

obtain a certain amount of data, it calculates the gradient of the neural network 

loss function in its own thread. These gradients will not update the neural 

network in its own thread, but update the public network which is called global 

network. Hence, several threads will independently use the accumulated 



gradient to update the neural network model parameters of the common part. 

In addition to stabilizing learning, using multiple parallel actor-learners helps to 

reduce the training time. 
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Fig.2 A conceptual illustration of A3C 

This paper employs the asynchronous RL method to design the gravity tractor 

hovering control. The RL problem is typically formulated as a Markov Decision 

Process (MDP). An MDP includes states space, actions space, a reward 

function, state transition probabilities and an optional discount rate. In this paper, 

the states space 

  d d d d d dS x x y y z z x x y y z z= − − − − − −  (21) 

consist of the deviation of the position and the velocity so that the controller 



could drive the GT to the hovering state, where  
T

x y z=r   is the 

spacecraft’s current location,  
T

d d d dx y z=r  is the spacecraft desired 

location. Because the gravitational attraction is determined by the position, the 

deviations are coupled. The actions space 

 
x y zA u u u =    (22) 

is chosen directly from the control accelerations. As a result, the policy has six-

dimensional state space and a three-dimensional action space. 

The reward function 

 ( ) r d v dR s k k= − + −r r r r  (23) 

describes the deviation of the position primarily. The deviation of the velocity is 

added so that the GT could achieve the hovering state in a shorter time. ,r vk k

are the weight coefficients which balance the influence of the deviations. 

In the hovering control problem, the state transition is determinate. The state 

transition probabilities is dominated by the dynamic introduced in Sec.II. The 

discount rate decides the influence of the reward in the subsequent steps. 

Numerical Simulations 

To demonstrate the adaptive capacity, three numerical simulations are done. 

The first simulation is a scenario that the dynamics in testing is the same as the 

one in training. In second simulation, the uncertainty of the dynamics is added 

and the result is illustrated. The third one is to shows that the model could 

learning online. This ability is demonstrated by initializing the parameter of the 

neural network with previous policy. The current policy through training could 

guarantee the control accuracy respect to a new environment. When working 

in a changed environment, the RL model could adapt to the difference 

according to the data and guarantee the accuracy of the control. 

The simulator used to calculate a candidate policy’s training process is Euler 

integration with a 0.1 second time-step and a control frequency of 10Hz. The 

simulation is considered with the parameter illustrated in Table 1. 

Table.1 Physical parameters of the binary asteroid system and GT 

Physical parameter Magnitude Unit 

Thrust [-1,1] N 

Mass of GT 10000 kg 

Hovering Position [6000,0,0] m 

Perturb [2,-3,4]×10-5 m/s2 



Semi-axis of asteroid 1 [1.417,1.361,1.183] km 

Semi-axis of asteroid 2 [0.595,0.450,0.343] km 

Density of asteroid 1 1.97×1015 kg/km3 

Density of asteroid 2 2.81×1015 kg/km3 

Period of asteroid 1 2.7645 h 

Period of asteroid 2 17.4223 h 

Period of system 17.4223 h 

 

 

Fig.3 The gravity acceleration on the desire hovering position 

Without loss of generality, the desire hovering position could be chosen on 

the x-axis. Fig.3 shows the gravity acceleration on the desire hovering position 

in five period of system. Because of the rotation and the revolution, the gravity 

acceleration on the desire hovering position is time-varying. 

 

 

Fig.4 The deviation of the state without control 

Fig.4 shows the deviation of the state without control. If the gravity tractor 

were to be uncontrolled, the gravity tractor should drift in a short time. Assume 

that the GT locates on the desire position at the begin, the GT will move 250m 

respect to the initial position in one hour. 



Table 2 The NN architecture of the actor-critic frame 

 Actor Critic 

 units activation units activation 

Input Layer 6 / 6 / 

Layer1 200 tanh 100 tanh 

Layer2 200 tanh 100 tanh 

Output Layer 
3 

3 

tanh 

softplus 
1 None 

The network architecture is illustrated in Table 2. The actor network and the 

critic network have common part. The output layer of the actor network decides 

the mean and the standard deviation of the random policy. 

 

Fig.5 Policy optimization evolution 

The return during the training steps is illustrated in Fig.5. The return increases 

rapidly at the beginning of the training process, which means the policy is 

optimized immediately. The policy may get optimal parameters after 400 steps, 

where the return arrives at a plain. The return curve in the last 100 steps has 

oscillation because the candidate policy belongs to random policy. Note that the 

policy in this stage is 1  and the environment is 1env . 

 

Fig.6 The deviation of the state with policy 1  in 1env  



Figure 6 shows that the policy 1   is able to achieve and maintain the 

hovering state. The GT has achieved the desired hovering state in 10min. The 

steady-state error is 0.0046686m in position and 8.6245×10-9 m/s2 in velocity. 

 

Fig.7 Acceleration command as a function of time in short-term 

The acceleration command is illustrated in Fig.7. The command satisfies the 

maximum acceleration constraint of the thruster. After the GT achieves the 

hovering state, the acceleration command is nearly a constant. 

 

Fig.8 Acceleration command as a function of time in long-term 

 

Fig.9 The deviation of the position as a function of time in long-term 

Compared with Fig.3, after achieving the hovering state, the thruster could 

balance the gravitational attraction without knowledge of the dynamics(as 



shown in Fig.8). There is some fluctuation in Fig.9 because the evaluated policy 

in the simulation is training in a short time, where its parameters can not 

track(adapt) the change of the gravity for such a long time. The adaptive 

capacity will be demonstrated later. During the mission, the parameters of the 

NN will be corrected while training online and the fluctuation could be 

suppressed. In another word, the policy is time-varying. 

The mission of GT is long-term. Assume that the dynamics of the system 

changes slowly with time, and there is a conspicuous difference between the 

preliminary stage and the terminal stage. This difference could be raised by the 

solar radian pressure or the evolution of the system. In this paper, a constant 

acceleration is employed to stand for this change. Although the policy 1 could 

accomplish the hovering control, the effect gets worse. Denote the environment 

which has a different dynamics is 2env . The deviation of the state in a new 

environment 2env  is illustrated in Fig.10. 

 

Fig.10 The deviation of the state with policy 1 in environment 2env  

The parameters of the policy are optimal respect to a certain environment. If 

the evaluated environment is different from the training environment, the ability 

of the policy is degraded. The steady-state error is 0.0091777m in position and 

9.4973×10-9 m/s2 in velocity. 

A new policy should be raised to adapt the environment so that the controller 

could maintain its accuracy. Using the parameters of the NN in policy 1   to 

initialize the NN of the policy 2  and the sample produce during the mission to 

train the model, the result can be improved.  



 

Fig.11 Policy optimization evolution 

The return is illustrated in Fig.11. After learning for a number of steps, the 

return arrives at another plain. It means that the reinforcement learning model 

has been trained as an optimal policy again. The gravitational attractions on the 

hovering position change slowly, and the RL model will search for an optimal 

policy to the environment steadily as a result. 

 

Fig.12 The deviation of the state with policy 2  in environment 2env  

Employing the policy 2  in the environment 2env , the result is illustrated in 

Fig.12. The steady-state error is 0.0043469m in position and 7.7531×10-9m/s2 

in velocity. Compared with the result in previous, the trained model can 

decrease the error caused by the change of the environment. Consequently, 

when the model is training during the mission, the policy could suppress the 

fluctuation in Fig.9. 

Implementation Details 

In order to facilitate reproduction of our results, we include in this section 

several techniques we used in our implementation. We use the ADAM optimizer 

to adjust the learning rate for both the policy and value function networks. The 

feature scaling is applied to the state, action and reward. The variables are 

assumed bounded and a min-max normalization is employed. 
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where x  is an original value, x  is the normalized value. According to the 

assume before, this normalization can be written in 
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where boundx  is the boundary value. By means of feature scaling, the variables 

can be normalized to the range in [0,1]. Feature scaling includes a series of 

methods and the hyperparameter could be adjusted for different scenarios. 

Table 3 shows the training hyperparameter in this paper. 

 

Table 3 Hyperparameter 

Hyperparameter Magnitude Unit 

The boundary value of position 5 m 

The boundary value of velocity 1 m/s 

The boundary value of action 1 N 

The discount rate 0.9  

The learning rate of the actor 0.0001  

The learning rate of the critic 0.001  

rk  0.8  

vk  0.2  

 

Conclusion and Discussion 

This paper proposes that Reinforcement Learning(RL) could help the Gravity 

Tractor(GT) to maintain the hovering state and adapt to the change of the 

environment. The binary asteroid system is modeled as a double ellipsoid 

system and the gravity model of the triaxial ellipsoid is a second degree and 

order gravity field. The relationship mapping the Markov Decision Process(MDP) 

and the hovering control problem is established. The actor-critic frame is 

explained as well. The simulation results have demonstrated that the RL model 

could adapt to the change of the attraction on the hovering position. The RL 

algorithm employed here is Asynchronous Advantage Actor-Critic. It belongs to 

on-policy algorithm, which supports learn the data and update the policy during 



the mission. This feature makes the agent evolution with the environment. As a 

long-term mission, this operation can produce lots of samples to train the model. 

On the other hand, learning online helps the agent to maintain the control 

accuracy. The RL model could adapt the evolution of the environment. 

Moreover, a little of researchers study the system of orbiting multiple gravity 

tractors to acquire larger total velocity increasement of the asteroid. Each single 

GT is treated as the asynchronous actor-leaners. Under this asynchronous  

frame, the muti-GT can take full advantage of the formation to sample the 

training data effectively. 
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