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INTRODUCTION 

 

ESAIL is a microsatellite developed in a PPP together with ESA and ExactEarth in Luxembourg. The satellite payload 

is an AIS Receiver for vessel-detection from space. During the development of the satellite, a multipurpose simulator 

was created to support several activities of the satellite development during its phases C and D. Taking in consideration 

the different facilities described in ECSS-E-TM-10-21, the ESAIL multipurpose simulator has been used in different 

configurations to produce the different facilities required by the ESAIL project. During the development of such 

simulator facilities and for the creation of simulation models, different technologies have been used. Those are 

described along this paper. In the first sections, we focus on the relevant aspects of the ESAIL satellite system design 

and the derived simulation models’ characteristics and fidelity. The later section describes the different facilities used 

during the ESAIL project, their purpose within the project lifecycle and their schematic architecture and building 

blocks. 

 

THE ESAIL SATELLITE  

 

The mission of ESAIL is to collect AIS signals from vessels all over the globe and provide the collected data to ground. 

The data is either to be processed on board (OBP) or on ground (OGP) depending on the purpose such data must serve. 

Therefore, the S/C can run in OBP and OGP both individually and simultaneously. 

 

ESAIL system design 

 

The satellite design is targeted to reach the following objectives: high reliability, high level of autonomy in nominal 

mission and low cost. These objectives are implemented with a system composed of the following functional chains: 

 

• On-Board Data Handling: responsible for controlling the spacecraft (platform and payload), managing the 

operative modes, collecting and storing housekeeping data.  

• Electric Power System: responsible for collecting, storing and distributing electrical power. 

• Telemetry & Telecommand: responsible for receiving and routing platform and payload telecommands and for 

downloading housekeeping data to ground. 

• Attitude determination & control: responsible for estimating and controlling the attitude of the satellite. 

• Payload: responsible for collecting, storing and downloading AIS data to ground. 

• Structure: responsible for protecting the system from external loads and 1for the deployment of platform and 

payload antennas. 

• Thermal Control: responsible for ensuring that each component of the spacecraft remains within their 

operational temperature ranges.  

 

The satellite implements the following redundancies: 

• OBC (2 cold redundant units) 

• TMTC (2 hot redundant receivers, and 2 cold redundant transmitters, sharing antennas and signal routing) 

• ADCS 

o Software on two redundant OBCs. 

o 2 cold redundant ADCS I/F units. 

o 2 cold redundant gyros. 

o 2 cold redundant magnetometers. 

o 4 reaction wheels in 3 orthogonal + 1 diagonal configurations (3 units at a time will be ON) 



o 3 orthogonal magnetorquers, each with internal redundancy 

o 6 fine sun sensors, 3 on each ADCS I/F unit. 

• Payload subsystem: 

o Payload Data Downlink (2 cold-redundant chains, sharing a single switch and single antenna) 

o AIS Receiver (with internal redundancy, 2 cold-redundant chains) 

• The EPS is not redundant, but certain elements such as the PCDU FPGA, are present in cold redundancy 

 

The Payload Data Handling Unit (PDHU) is not redundant. 

 

 

INITIAL STEPS AND SIMULATOR HIGH LEVEL REQUIREMENTS 

 

LuxSpace had already accumulated experience on the development of simulators during the SGEO HAG1 and EDRS-C 

missions, however there was an initial concern of the real need to develop a simulator in the frame of a program such as 

ESAIL, having important constraints in terms of budget and time. The option of using hardware based facilities and 

testing platforms instead of a software based simulator was preliminary discussed. During these discussions there were 

a set of reflections that show important risks of basing a validation and verification strategy using hardware-only means: 

Typically, hardware availability has a schedule that depends on a certain number of supplier schedule constraints that 

are not always respected. Thus, linking by example the OBSW validation schedule to a hardware availability date may 

produce an automatic delay on the OBSW validation plan if the hardware is late. Another point is that the simulation of 

the hardware failures could be complex (or impossible) to generate and record when only hardware means are available. 

Moreover, the fact to avoid working with the real hardware, reduces the risk of producing undesirable damages on the 

hardware equipment. Even when a small part of a hardware parts fails, when a replacement is needed, if the spare part is 

not available, there is an important dependency on the supplier that could impact the schedules. Finally, the possibility 

of parallel development and testing is reduced when only hardware means are available. These preliminary discussions, 

and hardware schedule constraints, brought the need of developing a simulator that could fulfil a number of needs. For 

high-level requirements:  

 

1. To support the software development and validation of the ADCS-IF board (hardware and software) as a 

subsystem 

2. To support the validation of the ESAIL OBSW including: 

a. OBSW functional validation in open and closed-loop. 

b. OBSW integrated tests. 

c. SRDB OBSW relevant parameters validation. 

d. Failure injection simulation controlled by the simulator operator. 

e. Capacity to run either real-time or faster. 

3. To allow debug of the OBSW debug being able to run step by step execution and to set breakpoints: 

4. To allow the OBSW testing, facilitating that every single developer/tester/end user can run an instance of the 

required facility on an office PC. 

5. To allow the execution of OBSW tests in an automatic fashion (e.g. by means of using a continuous integration 

tool like Jenkins). 

6. To integrate with the AIT EGSE CCS tool (that provides the spacecraft database to support model initialisation 

and the TM/TC encoding/decoding) that will be used for the satellite system V&V activities.  

7. To allow the execution of operational procedures for the operators of the satellite. 

8. To support the testing of future OBSW updates as required during the maintenance phase. 

 

 

ESAIL MULTIPURPOSE SIMULATOR INFRASTRUCTURE  

 

The ESAIL Multipurpose simulator follows the general block diagram architecture of the virtual system model shown 

in Fig. 1.  The used simulation infrastructure was Rufos (Runtime for Simulation). Rufos is the OHB’s SMP2 compliant 

simulation runtime environment that hosts the simulation models of the simulator facility and provides necessary 

services to configure and control these models during a running simulation ([3][4][5]). Rufos implements the different 

simulator states and the mandatory simulation services as required by the SMP2 simulation standard [6][7][8]. It also 

resolves the need to provide interfaces to control the simulation via a Man Machine Interface (MMI) for interactive 

simulations or via scripts for the execution of automatic procedures. Moreover, the Rufos “Platform Models” denote a 

set of SMP2 compliant models, which implement generic functionalities that recur within the different simulator 

facilities and could also be used in the context of ESAIL. In particular, the following software models were of interest 

for ESAIL 

 

• The “Common Models” that are SMP2 compliant simulation models of standardized spacecraft equipment that 

is intended for usage in various missions. For ESAIL OHB developed a model of the GR712RC board.  



• The “Line Models” implement simulation models of the standard electrical interfaces of spacecraft systems. In 

particular models such as SpaceWire (SpW), the CAN-BUS and several discrete signal lines were of interest 

for the ESAIL simulator. 

• The GNU Debugger (GDB) Interface Model provides the connection to an external tool for debugging the 

OBSW.  

• The Monitoring and Control (M&C) Interface Model simulates the communication interface between the 

spacecraft and the ground station. It is connected to an external M&C facility with which exchanges 

telecommands (TCs) and telemetries (TMs) using a pre-defined protocol.  

 

The generic view of the ESAIL simulation facility architecture is shown in Fig. 1. 

 

 
 

Fig. 1 ESAIL Simulation Facility Architecture 

 

The different facilities presented across this paper can be derived from this generic schema by configuration of the 

proper assembly of composed elements. 

 

Simulation Models  

 

A rich set of SMP2 simulation models have been developed in the frame of the ESAIL multipurpose simulator. Some 

models where provided by the OHB platform models including: 

 

• The CPU GR712RC common model. 

• Line models such us the CAN and UART line models. 

• GBD Model. 

• CCSIF Model. 

 

Other models were specific models developed by ESAIL: 

 

• The OBC excluding the CPU (GR712RC) model (OBC Flash Memory and FPGA model). 

• The GPS model (based on Phoenix-S receivers) 

• The TM/TC board model. 

• The payload models: PDHU and PDD models. 

• The ADCS IF board model. 



• The gyroscope model (based on the AstroFein AGS-1). 

• The magnetometer model. 

• The magnetorquer model. 

• The reaction wheel model (based on the AstroFein RW90). 

• The sun sensor model. 

• The EPS model including the PCDU, LCLBoard, Battery, Solar Array and FPGA Models. 

• The TCS subsystem including the heater line models. 

• Common models developed by LXS that are not project specific, so that they can be reused across projects   

(e.g ADConverter, CANNode or PowerSource). 

 

Model requirements were defined using DOORS and exported to MagicDraw using ReqIF. Models were designed using 

the pre-defined SMP2 stereotypes generating SMP2 compliant C++code and test skeletons directly from the models. 

These code and test skeletons were completed by the model developers within the Eclipse IDE. After model tests 

execution, test and test result information were automatically retro-feed into DOORS using DXL scripts.   

 

OBDH Modelling 

 

The brain of the simulator is the implementation of the emulated OBC of the ESAIL Satellite and more extensively its 

OBDH. The OBDH system consist of the following modules: 

 

• OBC, consisting of  

o OBC (HW) including the FPGA and Memories  

o OBC SW (OBSW) 

o OBC FPGA firmware 

• GPS 

 

The OBDH has two functions: 

 

• To manage and control the platform and the payload through the OBC and the OBSW 

• To provide orbital position and onboard time knowledge through the GPS. 

 

The general physical architecture of the OBDH functionality is shown in Fig 2, 
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Fig 2 ESAIL OBDH Physical Architecture 

 

The main parts of the OBDH physical architecture are the two redundant OBC (N: nominal, R: redundant). The OBC 

connects to the other equipment either by a direct link or through the dual redundant CAN bus. For the time reference, 

the OBC is supported by two GPS chains, which consists of antennas, LNA and GPS receivers. The OBC is a classical 

microprocessor system based on the space qualified GR712RC board that provides most of the required functionalities 



and interfaces. Different type of memories are integrated into the design (SRAM, Boot memory, Flash mass memory, 

MRAM). The FPGA (Actel RTAX1000S-CG624) is used to provide the functions and interfaces that are not covered 

by the processor. The modelling approach was to have a medium fidelity representation of the OBDH subsystem, 

especially high on the OBC FPGA, Memories, interface modelling for the OBC and GPS whereas the fidelity needs 

were lowered on the antenna and coupler models. The redundancy is achieved by two instances of the same model for 

OBC and GPS. 

 

Several processor interfaces were modelled such as the CAN, the CCSDS compatible GR712RC TC and TM interfaces, 

the singled ended processor GPIOs, the UART monitoring interface providing the sniffing capabilities to the OBSW 

and the Housekeeping ADC. For the CAN interfaces, dedicated CAN lines were modelled representing the CAN 2.0B 

controllers that are integrated in the GR712RC processor and the external CAN transceivers. Each controller/transceiver 

is also connected to one of the redundant CAN-BUS as in the real system. Elements connected to the CAN lines use 

dedicated CanNode components. A simplified schematic of the OBDH simulation models connected to the CAN-BUS 

is shown in Fig 3 

 

 

 

Fig 3 ESAIL OBDH subsystem  model 

 

 

EPS Modelling 

 

The EPS subsystem has been modelled to allow realistic control of the spacecraft. As part of the EPS subsystem the 

following models have been developed: 

 

• PCDU Model: including the LCLBoard, FPGA and Non-Volatile Memories have been modelled including the 

real redundancies.  

• Battery Model.  

• Solar Array Model. 

• Generic Power Models: Relays, ADCs or LCS´s models. 

 

The different equipment is connected to the EPS subsystem, and the power on and off of each equipment can be 

controlled by sensing the appropriate commands to the LCLs. 

 

ADCS Modelling 

 



The attitude determination and control subsystem has been modelled in two steps. In the first step the models were 

designed to allow debugging and validation of the OBSW, making more emphasis on the interface modelling compared 

to the accuracy of the equipment responses. On a second step the models were extended to allow more accurate 

responses close to the real system responses interacting with a dynamic model of the satellite environment with the 

objective to provide. The models of the sensors and actuators are connected to the ADCS IF model and provide 

information of their status to the board. Real redundancies of the system are also fully achieved by proper instantiation 

of the board, sensors and actuators SMP2/C++ classes. 

 

PL Modelling 

 

The models of the payload offer a reliable characterization of the different payload modes and the transitions between 

them. The payload modes and the status of the different payload models is summarized in Table 1 

 

Table 1 ESAIL PL units´states for each payload mode 

P/L Mode PDHU AIS RX PDD 

OM0 OFF OFF OFF 

OM1 ON ON OFF 

OM2 ON ON OFF 

OM3 ON ON OFF 

OM4 ON OFF ON 

OM5 ON ON ON 

OM6 ON ON ON 

OM7 ON ON ON 

 

For each PL equipment, the commands and the associated telemetries have also been modelled together with all the 

redundancies of the PL subsystem. 

 

TCS Modelling 

 

The thermal control subsystem modelling was one of the most critical models of the ESAIL simulator since there was 

no possibility to test the subsystem on other platforms. For that reason, the system and its models were implemented to 

allow a trustworthy simulation and reliable validation of the OBSW TCS implementation in open and closed loop. 

 

ESAIL SIMULATION FACILITIES  

 

Taking in consideration the initial needs and requirements, several facilities were built using the different models 

described in the previous sections. The following sections will describe the configuration of the different facilities that 

have been used within the ESAIL project.   

 

Functional Validation Testbench (FVT)  

 

The ESAIL satellite rely for its ADCS subsystem on the so called ADCS-IF avionic board, used to connect all Sensors 

and Actuators of the satellite. To support the analysis of system performance and the test and validation of the ADCS-IF 

(HW and the embedded SW developed by LuxSpace) a Functional Validation Testbench (FVT) was used. The scope of 

this simulator was in the ESAIL case not a complete system, but just a reduced configuration a with a focus on the 

identified critical bread-boarded and engineering model of the ADCS-IF hardware and software. This configuration 

consisted in a single OBC model, running a light OBSW containing the ADCF-IF Handler task. The ADCS-IF Control 

application (acting as facility M&C) was used to send direct commands to the OBSW ADCSIF-handler queue of the 

OBSW. These commands were later forwarded to the ADCS-IF board, that was connected to the simulator through a 

serial port of the computer used to run the overall simulator infrastructure. 

 

Software Validation Facility (SVF-SW) 

 

The simulator has been also used as SVF with essentially 4 main purposes. For one side to help the developers during 

the development of the OBSW, and later to perform formal validation of the OBSW. For the later, the risk of 

adaptations of model code to wrong OBSW behaviour was minimized by having different teams providing the OBSW 

and the SVF solutions. Another purpose was to introduce failure injection scenarios that cannot be tested easily by the 

available hardware. Develop procedures for OBSW validation that can be reused during the Flatsat campaign. The SVF 

was not be used to simulate processing and communication delays of the real HW. The ESAIL SVF follows the 

architecture of the virtual system model defined in [1] as SVF-SW where a processor model was used instead of the real 



OBC hardware in the loop (PIL configuration). In the frame of ESAIL the current implementation of the facility 

configuration described in Fig 4 includes the on-board computer emulator and the equipment models. No Spacecraft 

Dynamics and Environment Models were required for the facility concept for ESAIL. One of the advantages of the 

SVF, is that provides an execution environment that can be controlled down to the level of a single processor cycle. It 

also can be started, stopped, single stepped, and context frozen at any point in the OBSW execution. Thanks to these 

features, it was possible to trace and monitor the software for debugging purposes and for the acquisition of metrics data 

such as CPU utilization or task context switch .Moreover, the SVF was instantiated many times over so that each 

developer can have his own copy. Allowing the developers to use a personal instance of the SVF was a critical aspect in 

the frame of the ESAIL project. This permitted to have pre-tested OBSW versions just ready for the AIT Flatsat 

campaigns. The ESAIL SVF facility modelled all relevant S/C interfaces visible to the OBSW. The simulation can be 

executed at real time or faster than real time, allowing the user to save time for debugging purposes. The SVF 

infrastructure and the models were enabled to allow the injection of transient or persistent errors used to verify the 

FDIR capabilities of the flight software.  Simplified environmental models and satellite dynamics using predefined data 

were used to supply inputs to the sensors units. The schematic of the SVF-SW facility is shown in Fig 4. 

 

 

Fig 4 ESAIL SVF-SW facility 

AIV Simulator (AIVS) 

 

During the ESAIL qualification and acceptance, the ESAIL simulator was used as back-end integrated together with the 

Central Checkout System (CCS) used in the project (EGSE-SCOS). In such spacecraft AIV Facility configuration, the 

simulation of all the equipment, was implemented as part of this central simulator function however it also opened the 

door to integrate real hardware equipment. In ESAIL, the simulator models for this facility, were identical than the ones 

used in the SVF. TCL scripts were developed and executed using EGSE-SCOS TOPE environment, being the satellite 

commands and telemetries processed and generated by the AIV simulator. 

 

Operational Simulator (TOMS) 

 
The final facility implemented ESAIL is the Operations Simulator. In ESAIL this facility is a high fidelity model of the 

spacecraft that is obtained by model configuration.  Representative simulation of the spacecraft telecommanding and 

housekeeping telemetry for the platform and the payload modules is provided. This facility includes the environmental 

and spacecraft dynamics models that have been converted from the Matlab/Simulink models of the ADCS FES 

Simulator to SMP2/C++ using MOSAIC 10 tool. The block diagram on the facility is given in Fig 5 

 

 



 

 Fig 5. ESAIL TOMS facility 

 

CONCLUSIONS AND FUTURE WORK  

 

ESAIL is expected to be launched from Kourou during the second half of 2019. At the date of issue, the Operational 

Simulator is still on its last phase of development in close collaboration with ESA representatives. Further use-case 

extensions of the simulator are to be implemented, to facilitate ADCS close-loop simulation using the OBC Emulator 

and also the real OBC engineering model. The ESAIL simulator is expected to be used to support the operations team 

on maintenance duties during the satellite phase E.  

The ESAIL multipurpose simulator constitutes the first complete SMP2 Simulator that has adopted the SMP2 standard 

at LuxSpace and has consolidated the use of a common simulation platform (Rufos) and strengthen the collaboration 

within the OHB group teams in charge of building simulation facilities. 
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