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shallow entry angle 18°

airburst altitude: 25-30 km

explosive energy: 500kT TNT

glass damage

collapsed roof
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~ 6% porous

By Buhl S - Own work, 

CC BY-SA 3.0

Alishevskikh A – Own work, 

CC BY-SA 2.0

By Plekhanov N - Own work, 

CC BY-SA 3.0



Lawrence Livermore National Laboratory LLNL-PRES-846392
3

▪ SPH is a Lagrangian

mesh-free approach to 

solving PDE’s.

▪ Nodes interact with a 

dynamic neighbor set 

through a smoothing 

kernel.

Credit: Jlceros

Our code Spheral++

Steerable, massively parallel, 

environment for particle-based 

simulation. Written in C++ with 

python wrapping.

Spheral’s FSISPH solver is 

used in this study. The solver 

was designed to model the 

highly dynamic interactions of 

dissimilar materials.

github repo

FSISPH methods

Pearl 2022
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▪ Domain set in the bolide frame.

▪ Inlet conditions feeds particles in.

▪ Particles are volume-matched at 

the stagnation point on the 

material interface.

▪ Material properties derived from 
available data for Chelyabinsk 
meteorites. (Zaytsev 2022, Kohout
2012). Material properties of granite 
used to fill gaps. 

▪ Tillotson equation of state

▪ Elasticity, plasticity, and damage 
models based on Benz and Asphaug 
1994 with modifications of Owen 2010, 
Owen 2022.

▪ Strain – porosity model of Wunnemann
2006 with thermal correction of Collins 
2010.

▪ LEOS tabular data for air to model 
high-temperature effects.
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(1) Each timestep total energy/ 

momentum deposit 

determined from tabulated 

output from entry simulation. 

(2) energy/momentum 

distributed over a 

smoothing kernel.

(3) Deposited along the 

trajectory in a graded

hydrostatic atmosphere

as a time-dependent    

source.
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Air shown as specific 

thermal energy contour, the 

bolide as the damage trace.

Intact Fragments 

viewed from 

downrange

Fracture occurs 

near  the rear and 

propagates 

forward

Intact 

fragments pivot 

about stag. 

point, increase  

cross section

Damaged 

debris is 

shielded in the 

wake

Fragments 

separate and 

formerly shield 

debris is swept 

downstream

Main fragments 

begin to break up
Fragments full 

disrupted

Debris cloud 

decelerates
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Brown 2013 derived from 

the light curve assuming a 

black-body emission with a 

source temperature of 

6000 K and a bolometric 

efficiency of 17%.

Popova 2013 fit their 

fragmentation-based semi-

analytic model (Popova 

2011) to the observed light 

curve. Red and blue 

represent two realization of 

the model.
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29.8 21.2 18.3

Deposit Rate Averaged Altitude 
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Energy Energy & Momentum

d=500m

Deposition Geometry

Depositing momentum in 

addition to energy increased 

peak overpressure by > 20% 

at 60s.*

* Total energy deposit is the same between the two approaches. Energy is 100% thermal energy. Energy & 

Momentum is a balance between kinetic and thermal energy set by conservation laws and the deposition geometry.

Ground-zero max 

overpressure 4.96 psi

Ground-zero max 

overpressure 3.58 psi
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Downrange

Transverse 

direction

Flight path

Uprange

• Steeper trajectories are 

more sensitive to the 

deposition technique.

• Peak overpressure varies 

by 40%.

• 45° entry yields a 30 km 

region with overpressures 

15% above the peak for 

18°.

• 90° entry directs much of 

the energy horizontally 

producing a flatter 

overpressure curve.

Distribution 

Artifact

These effects simulations are under-resolved and meant to qualitatively compare  

entry angle and deposition technique effects on the ground signature.



Lawrence Livermore National Laboratory LLNL-PRES-846392
11

▪ 3D Spheral simulation within 3 km of 
Borovicka’s observation-derived altitude of peak 
energy deposit.

▪ Shallow entry angles result in higher bursts. 

▪ A shallow entry and higher burst does not 
necessarily mean ground overpressures will be 
lower.

▪ Simulations of steep entries (~90°) are sensitive 
to the deposition technique whereas shallow 
entries (≤ 45°) are relatively insensitive.
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Based on Newton Theory 

(theoretical max)

From observed 

fragments in 

video footage
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Popova 2013 fit their 

fragmentation-based semi-

analytic model (Popova 

2011) to the observed light 

curve. 
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