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Introduction
• Large uncertainties in asteroid properties and trajectories lead to high 

numbers of potential scenarios to adequately cover the parameter ranges 

• Planetary defense teams need fast-running tools to simulate each situation 
and evaluate damage probabilities 

• Among the solutions proposed, the PAIR model (Mathias 2017) simulates 
tens-of-millions of scenarios, with damages and number of people affected

• These studies can be run in O(1h) on large supercomputers, but they would 
require days on regular laptops

à We propose here to develop machine learning models that estimate 
accurately asteroid damages for millions of scenarios in minutes on regular 
computers.
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Data generation with the PAIR model
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The PAIR model (Mathias 2017) is used to 
generate the dataset for the ML models. The 
approach is based on:

• A Monte-Carlo framework to sample 
realizations from realistic distributions (Fig.1)

• Models to simulate physical mechanisms such 
as fragmentation, hazard propagation, etc.

We obtain a dataset of large numbers of data 
points, each of them containing:

• A list of 8 parameters characterizing the entry 
conditions: diameter, velocity, density, 
incidence angle, aerodynamic strength, 
luminous efficiency, ablation coefficient, 
strength scaling coefficient

• The resulting radius of a damaged area (e.g., 
radius of the >1 psi circular area, Fig.2)

Fig 1: Entry parameter distributions

Fig 2: Areas damaged by blast overpressure
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Machine learning models
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• We are trying to find a function that maps the entry conditions to the associated 
local damages. In mathematical terms, we try to find a function f such that: 

𝑓 𝑋 = 𝑦 with

• We propose to train, test and compare 5 machine learning models, in the 
following order of complexity:

1. Linear regression
2. Decision tree
3. Random forest
4. Gradient boosting
5. Neural network

à The models are trained to adjust their parameters and reduce the sum of 
squared errors between the predictions and the PAIR output:

minimize ∑!"#
$!"#$%(𝑦!, &'() − 𝑦!, *'+(), = ∑!"#

$!"#$%(𝑓(𝑋!) − 𝑦!, *'+(),

𝑋 = [𝐷, 𝑣, 𝜃,𝜌,…] (8 inputs) 
𝑦 = 𝑅!"#"$%! "&%" (1 output) 
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Machine learning models
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1. Linear regression: a linear combination of the independent variables
𝑅)-.-/() = 𝑓 𝐷, 𝑣,… , 𝜃 = 𝛽0 + 𝛽# 𝐷 + 𝛽,𝑣 + …+ 𝛽1𝜃

with coefficients {𝛽0; 𝛽,; … ; 𝛽1} to be optimized
2. Decision tree: a sequence of comparisons between independent variables 

and thresholds to determine the value of the prediction at the leaf node

3. Random forest: the average of 𝑁 decision trees trained independently on 
different data subsets. If 𝑅' is the prediction of decision tree 𝑖, 𝑅 = (

)
∑'*() 𝑅'

4. Gradient boosting: the weighted combination of 𝑁 decision trees, where 
trees are trained successively on the residuals of the previous ones to adjust 
the errors. If 𝑅' is the prediction of decision tree 𝑖, 𝑅 = (

)
∑'*() 𝑤'𝑅'

𝑣 < 𝑡& 𝑣 ≥ 𝑡&

𝐷 < 𝑡' 𝐷 ≥ 𝑡'

𝑅 = 𝑎 𝑅 = 𝑏 𝑅 = 𝑐
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Machine learning models
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5. Neural network: a complex parametric function that transforms the input 
vector several times through 𝐿 successive layers:

• Each layer consists in a matrix multiplication operation with matrix 𝑊2 for layer 𝑙, and a 
transformation with a predefined activation function 𝑓2

• The optimizer of the neural network tries to find the best set of weights in matrices 𝑊2

for each layer 𝑙 in [1; 𝐿]
•We try several architectures with different numbers of layers, activation functions, etc.

DD

ν

𝜌

… …
…

… 𝑅!"#"$%!

Layer 0
(input)

Layer 1 Layer 2 Layer 3 Layer 4 
(output)
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Training, validation and testing
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• The original dataset is split into 3 subsets: the training, validation, and test sets 
with 7000, 2000, and 1000 points respectively. Each subset covers most of the 
range of entry conditions from the distributions used in PAIR:

• The training set fits the weights of the ML models, the validation set tunes the 
hyper-parameters, and the test set evaluates the performance on unseen data.

• We use common ML best practices: data normalization, cross validation, etc.
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Results: prediction of blast radius
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The five machine learning models are trained to estimate the radius of the area 
damaged by serious blast (i.e., > 1𝑝𝑠𝑖 blast overpressure):

1. Linear regressor 2. Decision tree 3. Random forest

4. Gradient boosting 5. Neural networkPAIR output 
(dataset)

Predictions 
(ML models)

NN	results:

𝑅2 = 0.99
𝑒̅()* = 5.0 𝑘𝑚
𝑒̅+,- = 11.5 %
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Conclusion
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We have identified an opportunity to complement physics-based models with ML 
methods for asteroid risk assessment. The results of our ML models are:

• Accurate predictions of the size of damaged areas with ~10% average error 
on the radius compared to the PAIR model.  Coefficients of determination are 
around 99%, and absolute errors are on the order of a few kilometers

• Significant reduction of hardware requirements, local asteroid damages can 
be computed in minutes on local laptops instead of supercomputers

• Easy integration for mitigation teams, possibility to differentiate the models to 
optimize the response

• Complex sensitivity analyses to explain the predictions of the models, and 
determine which parameters are most responsible for the damage


