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ABSTRACT

This paper presents the advantages of integrating linear time varying (LTV) performance analyses
into the space launcher control design and certification process. Multiple performance metrics
of the atmospheric flight phase for an expendable launch vehicle are analyzed for two different
control strategies. The analyses cover wind disturbance and uncertainty in the launcher dynamics.
A disk margin-type uncertainty is implemented to relate the analysis to classical gain and phase
margins commonly used in certification processes. The uncertainties input/output behavior is cov-
ered using integral quadratic constraints. Thus, recent advances on the worst-case gain analysis of
finite horizon LTV systems can be used. The corresponding analysis condition is based on a pa-
rameterized Riccati differential equation’s solvability, which leads to a readily solvable nonlinear
optimization problem. Using this, it is possible to explicitly respect the time varying dynamics
of the space launcher in a analytical worst-case performance analysis. The applied performance
certificate in combination with a sophisticated wind model provides a worst-case performance
which directly compares to the nonlinear simulation. The results of a nominal and uncertain LTV
analysis are compared against corresponding Monte Carlo simulations of the respective industry-
sized nonlinear launcher model. These comparisons demonstrate the computational advantages
and potential acceleration of the control design and certification process using LTV methods.

1 INTRODUCTION

Since the early 2000s, the NewSpace market is flourishing. A rising number of new small satellite
installations led to the emergence of several micro-launcher companies. Micro launcher companies
must be more responsive and flexible than the established launch services providers in order to take
significant market shares. This increasing agility requires a paradigm change in the missionization
process and the design of Guidance, Navigation and Control (GNC) systems. In general, both pro-
cesses must accommodate for a wide range of payloads and customers. This requirement forces
micro-launcher companies to abandon classical time-consuming approaches for GNC design and
certification. Robust control techniques present an alternative as they promise a reduction in tun-
ing and certification effort for new missions. Especially, in the verification and validation (V & V)
process covering uncertainties and disturbances (,e.g, wind) they present a suitable complement to
time consuming simulation-based methods such as Monte Carlo analysis of the full-nonlinear model.
Simulation-based approaches can only provide lower bounds or probabilistic statements regarding the
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worst-case performance. In contrast, analytical robustness analyses can provide actual upper bounds
for the respective system.
Hence, robust control methods experience renewed interest in recent years for control design [1] and
(robustness) analysis especially for the atmospheric flight phase. However, most analysis efforts con-
sider the space launcher as linear time invariant (LTI) system using either classical phase and gain
margins [2] or the structured singular value (µ-framework) [3]. However, these analyses are lim-
ited to frozen points in time and consider infinite time horizons. Hence, they fail to cover the actual
launcher dynamics and finite horizon of the ascent. A nonintuitive validation gap is the consequence.
The space launcher follows a pre-calculated trajectory resulting in solely time-dependent dynamics.
Linearizing the launcher dynamics along this pre-calculated trajectory thus yields a finite horizon lin-
ear time-varying (LTV) system. A recent extension of the LTV bounded real lemma (BRL) to integral
quadratic constraints (IQCs) (see, e.g., [4] or [5]) presents a viable framework for the robust perfor-
mance analysis of launch systems under perturbations. The LTV IQC framework presented in section
3 can cover a variety of perturbations in the launcher dynamics such as, parametric and dynamic
uncertainties, hard non-linearities (, e.g., actuator saturation), and infinite dimensional systems (e.g.,
time delays). The general suitability of the framework for the ascent problem has been demonstrated
in, e.g., [6]. Efficient computational approaches and algorithms are presented in [5] or [7].
The present paper illustrates how the LTV framework can improve and speed up a typical control
design process for space launchers in atmospheric ascent. For that purpose, two classical PD con-
trollers for the gravity turn maneuver are designed. The first controller guarantees a stable drift pole,
whereas the second controller applies a drift minimal condition yielding an unstable drift pole. For
both controllers, a robust performance analysis of the nominal and perturbed launcher dynamics under
wind disturbance for multiple performance metrics is conducted. These metrics include the vertical
drift and drift rate, pitch angle error, and aerodynamic load. The nominal LTV analysis provides
fast feedback on how control design changes affect the performance metrics. The LTV IQC analysis
provides fast feedback on how robust the control system is with respect to uncertainty in the launcher
dynamics. Here, a disk margin-like perturbation is considered which resembles a simultaneous phase
and gain perturbation. Thus, the perturbation relates back to classical robustness criteria such as gain
and phase margins familiar and easy to interpret for control engineers.
An exemplary wind filter design procedure for the LTV BRL framework is presented in section 4.
The proposed wind filter shapes wind disturbances matching the spectral content of Dryden-like tur-
bulence from arbitrary norm bounded inputs . Dryden turbulence is often applied in aerospace cer-
tification. In combination with the performance certificate presented in section 3, the LTV analyses
provide actual physical values which can be directly compared to the outcomes of a Monte Carlo
simulation. The results of the LTV analyses are compared to equivalent Monte Carlo simulations of
the nonlinear model to demonstrate the potential of the approach.
The LTV analyses presented in this paper will be an integral part of Astos Solutions’ and TU Dres-
den’s “Reconfigurable Control Design Framework for Micro-Launchers” (LAURCF) activity. Thus
the paper demonstrates how customers of Astos Solutions, a provider of software and services of
already more than 43 micro-launcher companies and space agencies worldwide, can in the future
benefit from cutting edge research results by TU Dresden to accelerate their GNC processes.

2 GNC TOOL CHAIN AND FRAMEWORK

Following this strategy and in response to the needs of (micro-) launcher companies, Astos Solutions
and TUD develop a complete toolchain making use of state-of-the-art techniques in robust control
within the “Reconfigurable Control Design Framework for Micro-Launchers” (LAURCF) activity.
The project LAURCF is carried out under a program of and funded by the European Space Agency
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- through the “Future Launchers Preparatory Programme”. This development will bridge the gap
between state-of-the-art research and industry applications for launch vehicles utilizing Astos’ unique
position in the market.
The framework will encapsulate the well-established multi-purpose ASTOS software for trajectory
optimization and the dynamics, kinematics and environment for the functional engineering simulator
(FES). A linearization tool automatically generates linearized launch vehicle dynamics along the opti-
mized reference trajectory and provides the possibility to extend the model by physical effects such as
flexibility, sloshing, Tail-Wags-Dog (TWD), jet damping and more. This provides a significant benefit
allowing the GNC engineer to adjust the complexity of the model to the corresponding task. A lin-
earization verification tool validates the obtained linearized dynamics against the nonlinear FES and
provides immensely beneficial rapid insights to the GNC engineer. One of the key parts of the control
design cycle is to introduce and satisfy control requirements. In robust control, these requirements are
typically included as weighting functions. The requirements specification tool based on the approach
developed by TUD [8] offers a straightforward interpretation and translation of these requirements
into the design of the weighting functions. This approach overcomes the need for expert knowledge
and experience acquired over years and aims to make robust control more accessible to the industry.
The robust control synthesis tool allows to efficiently implement different types of controllers, such
as structured and non-structuredH∞, LTV and LPV controller including observer-based architectures
with predefined structures [9], [10]. Apart from classical stability analyses and robust analyses for
LTI systems, the robust control analysis tool offers nominal and integral quadratic constraint (IQC)
based worst-case analyses for LTV systems [7], as described - in a reduced form - in this paper. A
Monte Carlo (MC) environment linking the uncertainties defined in the models for the robust control
design to the FES completes the framework, providing the user the final step in the verification and
validation (V & V) process by straightforward performing and post-process MC simulations.

3 UNCERTAIN LINEAR TIME-VARYING SYSTEMS OVER FINITE HORIZONS

Gt

∆

de

wv

Figure 1: Interconnection of an LTV system and perturbation

An uncertain linear time-varying system Fu(Gt,∆) is defined by the feedback interconnection of a
nominal LTV system Gt and the perturbation ∆ as pictured in Fig. 1. The nominal LTV system Gt is
given by:

ẋGt(t) = AGt(t)xGt(t) +BGt(t)
[
w(t)
d(t)

]
[
v(t)
e(t)

]
= CGt(t)xGt(t) +BGt(t)

[
w(t)
d(t)

]
.

(1)

In (1), xGt(t) ∈ RnxGt , d(t) ∈ Rnd , and e(t) ∈ Rne denote the state, input, and the output vector,
respectively. The matrices AGt , BGt , CGt , and DGt are piecewise continuous locally bounded matrix-
valued functions of time with corresponding dimensions. To shorten the notation, the explicit time
dependence is mostly omitted in this paper. Thus, LTI systems will be clearly introduced as such.
The uncertainty ∆ : Lnv2 [0, T ] → Lnw2 [0, T ] is a bounded and causal operator. ∆ can describe hard
nonlinearities like saturations, infinite-dimensional operators like time delays, and dynamic and real
parametric uncertainties.
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3.1 Integral Quadratic Constraints

In this paper, the input output behavior of a perturbation ∆ is bounded via time-domain IQCs. Time
domain IQCs are defined based on a filter Ψ ∈ RHnz×(nv+nw)

∞ and a nz × nz real, symmetric matrix
M [11]. In case the output z of the filter Ψ fulfills the quadratic time constraint∫ T

0

z(t)TMz(t) dt ≥ 0 (2)

for all v ∈ L2[0, T ] and w = ∆(v) over the interval [0, T ], the uncertainty ∆ satisfies the IQC defined
by M and Ψ. If so, the short notation ∆ ∈ IQC(Ψ,M) is used.

3.2 Robustness Analysis of Linear Time-Varying Systems

From the worst-case analysis of nominal LTV systems in [12] and the finite horizon time-domain IQC
formulation of the perturbation ∆, a worst-case gain condition can be derived [5], [13]. It provides a
guaranteed upper bound on the input-output behavior of an uncertain LTV systems over the considered
finite analysis horizon. Thus, it is possible to tackle the analysis problem posed by the interconnection
of a known LTV system Gt and a perturbation ∆. Given a perturbation satisfying an IQC represented
by (Ψ,M), i.e. ∆ ∈ IQC(Ψ,M), the interconnection Fu(Gt,∆) can be extended by the IQC filter
Ψ. This procedure is illustrated by Fig. 2. The dynamics of this interconnection are represented by

Gt

∆

Ψ

de

wv

z

Figure 2: Feedback Interconnection LTV system Gt and uncertainty ∆

ẋ(t) = A(t)x(t) +
[
B1(t) B2(t)

] [w(t)

d(t)

]
[
z(t)

e(t)

]
=

[
C1(t)

C2(t)

]
x(t) +

[
D11(t) D12(t)

D21(t) D22(t)

][
w(t)

d(t)

]
.

(3)

denoted as the extended LTV system G. In (3), x(t) ∈ Rnx represents the state vector containing
the states of Gt and Ψ, d(t) ∈ Rnd the disturbance vector, and e(t) ∈ Rne the performance output
vector. By enforcing the time-domain inequality (2) on the filter output z, the explicit representation
of the uncertainty w = ∆(v) is replaced. The finite horizon worst-case L2[0, T ] to Euclidean gain is
proposed as:

‖Fu(Gt,∆)‖2 := sup
∆∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d6=0,x(0)=0

‖e(T )‖2

‖d(t)‖2[0,T ]

. (4)

This gain can be geometrically interpreted as the ball upper bounding the worst-case output e(T ) at
the terminal time T over all ∆ ∈ IQC(Ψ,M) given ‖d(t)‖2[0,T ] = 1, with

‖d‖2[0,T ] =

[ ∫ T

0

dT (t)d(t) dt

] 1
2

. (5)
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A dissipation inequality can be stated to upper bound the worst-case L2[0, T ] to Euclidean gain of
the interconnection Fu(Gt,∆). It is based on the extended LTV system G given by (3) and the finite
horizon time domain IQC formulation in (2). For a more thoroughly description the reader is referred
to [5] and [13]. This dissipation inequality is rearranged as an equivalent Riccati differential equation
(RDE) formulation in the following Theorem:

Theorem 1. Let Fu(Gt,∆) be well posed ∀∆ ∈ IQC(Ψ,M), then ‖Fu(Gt,∆)‖2 < γ if there exists
a continuously differentiable symmetric P : [0, T ]→ Rnx×nx such that

P (T ) =
1

γ
C2(T )TC2(T ), (6)

Ṗ = Q+ PÃ+ ÃTP − PSP ∀t ∈ [0, T ], (7)

and

R =

[
DT

11MD11 DT
11MD12

DT
12MD11 DT

12MD12 − γI

]
< 0 ∀ t ∈ [0, T ], (8)

with

Ã =
[
B1 B2

]
R−1

[
(CT

1 MD11)T

(CT
1 MD12)T

]
− A, S = −

[
B1 B2

]
R−1

[
BT

1

BT
2

]
(9)

and

Q = −CT
1 MC1 +

[
(CT

1 MD11)T

(CT
1 MD12)T

]T
R−1

[
(CT

1 MD11)T

(CT
1 MD12)T

]
. (10)

Proof. The proof is provided in [5].

The RDE (7) is a stiff ordinary differential equation [14]. Thus, in this paper it is solved with the
Matlab internal solver ODE15s [15]. The computational effort scales with the length of the analysis
horizon as well as the complexity/size of the IQC parameterization. Especially the latter makes the
RDE numerically harder to solve, due to adverse effects on its conditioning.

3.3 Worst-Case Gain Computation

Generally, an infinite number of IQCs exist to describe a given uncertainty. The most common ap-
proach found in literature, see, e.g., [16] or [17], is to select a fixed filter Ψ and parameterize M .
This means the IQC matrix M is confined to a feasibility setM such that ∆ ∈ IQC(Ψ,M) for all
M ∈ M. The analysis conducted in this paper covers perturbations in the form of full-block LTI dy-
namic uncertainties. An example for a feasible parameterization of such an uncertainty type is shown
in Example 3.1.

Example 3.1. Let ∆ be a full-block LTI dynamic uncertainty, with ∆ ∈ RH∞ and ‖∆‖∞ ≤ b ∈ R. A

valid time-domain IQC for ∆ is defined by Ψ =
[
bψν⊗Inv 0

0 ψν⊗Inv

]
andM := {M =

[
X⊗Inv 0

0 −X⊗Inv

]
:

X = XT > 0 ∈ R(ν+1)×(ν+1)}. A typical choice for ψν ∈ RH(ν+1)×1
∞ is:

ψν =
[
1 s+ρ

s−ρ . . . (s+ρ)ν

(s−ρ)ν

]T
, ρ < 0 , ν ∈ N0. (11)
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In the example above, the matrix variables X and Y are free parameters, whereas ψν is a fixed basis
function with preselected ν and ρ. By ⊗, the Kronecker product is denoted.
By following the described approach, the RDE in Theorem 1 is now parameterized with M ∈ M.
This leads to the corresponding nonlinear optimization problem to minimize γ [4]:

min
M∈M

γ

such that ∀t ∈ [0, T ]

P (T ) =
1

γ
C2(T )TC2(T )

Ṗ = Q+ PÃ+ ÃTP − PSP
R < 0.

(12)

In [7], an algorithm to efficiently solve the optimization problem is given. This algorithm is based on
two nested loops identifying M such that γ is a minimum. In the inner loop, a bisection for a fixed
M over γ is conducted. The corresponding outer loop performs a global optimization over M ∈ M
applying the Log-L-SHADE [7] meta-heuristic identifying the minimal γ. The algorithm provides a
set of parameters which allow to adjust it to a specific analysis. These include the search space of
the decision variables, the initial population size, i.e. the number of randomized initial guesses in
the search space, and amount of population iterations, i.e. the number of decision set iterations. The
latter two, in general, scale with the number of decision variables. For more details on recommended
settings and their effects the reader is referred to [7].

4 LAUNCHER MODEL

In this paper, multiple performance metrics of an expendable launch vehicle (ELV) in atmospheric
ascent under wind disturbance are analyzed. The respective time horizon relevant for the analysis
spans from ts = 25 s to tf = 95 s after lift-off.

local horizon

zb

xb

α θb

mg

T

C
δTVC

trajectory

G

lCG
wz

V

N

A

lGP

P

Figure 3: Expandable launch vehicle in body fixed reference frame
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4.1 Nonlinear Dynamics

During the atmospheric ascent, the space launcher can be treated as perfectly symmetric, with fully
decoupled pitch and yaw dynamics for small roll-rates [18]. In the present paper, only the pitch
dynamics are further considered. Given the flight segment’s overall duration and velocity regime, the
earth can be assumed flat and non-rotating [19]. The analysis only considers the rigid body motion.
Fuel sloshing is neglected as only the upper module uses liquid propellant. Hence, liquid fuel makes
up only a negligible fraction of the overall system mass. By the same reasoning, the effects of nozzle
inertia are neglected. An illustration of the launcher’s pitch dynamics is given in Fig. 3. Forces are
indicated by red and velocities by blue arrows.
The launcher’s nonlinear equations of motion (EoM) are formulated with respect to its instantaneous
center of gravity G in a body-reference coordinate system denoted by the subscript b. The xb-axis is
aligned with the launcher’s symmetry axis and is defined positive in the direction of forward travel.
The zb-axis points downward, forming a right-hand system with the yb-axis. The launcher’s nonlinear
EoM in the pitch plane are described by:

θ̈b(t) =

∑
My(Ma,α, h, t)

Jyy(t,m)

=
N(Ma,α, h, t)lGP (Ma,m, t)

Jyy(t,m)
− θ̇b

J̇yy(m, t)

Jyy(m, t)
− T (t)lCG(t,m)

Jyy(t,m)
sin δTVC(t)

ẍb(t) =

∑
Fx(Ma,α, h, t)

m(t)
− θ̇b(t)żb(t)

=
T (t) cos δTVC(t)− A(Ma,α, h, t)

m(t)
− g0(h) sin θb(t)− θ̇b(t)żb(t)

z̈b(t) =

∑
Fz(Ma,α, h, t)

m(t)
− θ̇b(t)ẋb(t)

=− N(Ma,α, h, t)

m(t)
− T (t)

m(t)
sin δTVC(t) + g0(h) cos θb(t)− θ̇b(t)ẋb(t)

(13)

In (13),
∑
My is the sum of moments around the pitch axis formulated with respect to the center of

gravity G. The sum of forces in xb and zb direction are denoted by
∑
Fx and

∑
Fz, respectively.

The launcher’s pitch angle corresponds to the angle between the xb axis and the local horizon. It is
denoted θb. The axial and normal accelerations are denoted ẍb and z̈b. Finally, A and N are the axial
and normal aerodynamic forces. They are defined by

A(Ma,α, h, t) = Q(h, t)Sref CA(α,Ma)

N(Ma,α, h, t) = Q(h, t)Sref CN(α,Ma),
(14)

with the dynamic pressure Q(h, t) = 0.5ρ(h)V 2(t), reference area Sref and aerodynamic force coeffi-
cientsCA andCN . These coefficients dependent nonlinearly on the Mach numberMa and the angle of
attack α and act on the launcher’s center of pressure P . The variable V is the absolute aerodynamic
velocity of the ELV. The density of the air ρ is calculated according to the international standard
atmosphere (ISA) [20]. In contrast to standard aerospace conventions, the aerodynamic forces are
expressed in body axes rather than in a coordinate system attached to the aerodynamic velocity. Here,
the axial and normal forces are defined in the negative axis directions. Thus, A acts in negative xb
direction and N acts in negative zb direction In (14), the angle of attack is approximated as

α(t) ≈ żb(t)− wz(t)
ẋb(t)

, (15)
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where wz is the external wind disturbance aligned with the zb-axis.
The launcher’s thrust T acts at the nozzle reference point C. It can be rotated by the angle δTVC

using the thrust vector control (TVC) system. The TVC deflection presents the launcher’s sole means
of control. Due to the characteristics of the solid rocket motor, the thrust follows a predefined time
profile after ignition.
The overall moment of inertia Jyy is defined with respect to the instantaneous center of gravity G and
depends directly on the launcher’s momentary mass. The same is true for the center of gravity itself.
The altitude-dependent gravitational acceleration g0(h) is calculated based on the world geodetic
system 84 (WGS 84) [21] with a launch site close to the equator.
A second-order transfer function with unit DC-gain kTVC, natural frequency ωTVC = 50 rad/s, and
damping ratio ζTVC = 0.7 is used to model the dynamics of the thrust vector control system:[

δ̇TVC

δ̈TVC

]
=

[
0 1

−ω2
TVC −2ζTVCωTVC

][
δTVC

δ̇TVC

]
+

[
0

kTVCω
2
TVC

]
δTVC,c (16)

The TVC dynamics are connected to the launch vehicle rigid body dynamics via δTVC. The com-
manded TVC deflection δTVC,c remains the sole control input.

4.2 Linear Dynamics

The nominal trajectory of a space launcher through the earth’s atmosphere is usually a so-called
gravity turn. It is calculated under the paradigm that only a velocity component in xb-direction shall
exist, i.e., α = 0. Hence, the normal acceleration due to curvature of the launcher trajectory and the
gravitational acceleration on the launcher must compensate each other. The balance of both forces
leads to the set of equations [22]:

ḣ = V sin θb Ẋ = V cos θb

V̇ =
T −D
m

− g0 sin θb θ̇b = −g0

V
cos θb

(17)

derived from the launcher’s equations of motion (13). In (17), h is the altitude andD is the downrange
distance. Solving (17) for a given h0, θ0, ẋb0 and D0 provides a so-called pitch program for the
launcher.
The performance analysis in section 3 requires an LTV representation of the ELV along the reference
gravity turn trajectory. In this paper, the finite horizon LTV model is calculated by numerically
linearizing the nonlinear dynamics in (13) with respect to a trajectory fixed frame, see, for example,
[23] for details. The time segment spans from 25 s to 95 s after lift-off and a step size of 0.1 s is
chosen. The result is a finite horizon LTV system Gt as defined in (1). The state vector including the
linear actuator dynamics is x = [∆θ,∆θ̇,∆ż,∆δTVC,∆δ̇TVC]T , the disturbance vector is d = ∆wz,
the input vector is u = ∆δTVC,c, and the output vector is y = [∆θ,∆θ̇,∆ż,∆z,∆Qα,∆α]T . Note
that the ∆ẋ state is truncated due to its neglectable influence following common practice [23]. The
symbol ∆ refers to the deviation from the reference value on the design trajectory.

4.3 Wind Model

The evaluated wind disturbance shall resemble Dryden turbulence profiles. These are frequently used
aerospace certification processes, see, for example, [24].
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4.3.1 Wind Filter Nonlinear Analysis

In the nonlinear analysis, the Dryden wind filter Gw for vertical turbulence

ẋw(t) =
[

0 1

−(V (t)
Lw

)
2
−2

V (t)
Lw

]
xw(t) +

[
0

(V (t)
Lw

)
2

]
nw(t)

wz(t) =
[
σ(h)

√
Lw
πV (t)

σ(h) Lw
V (t)

√
3Lu
πV (t)

]
xw(t)

(18)

with white noise input nw, is used to generate the wind disturbance wz. Here, the white noise signal is
calculated by Matlab’s internal band-limited white noise block. These signals have a power spectral
density Φ of one and are shaped into continuous turbulence profiles statistically matching real turbu-
lence by the filter Gw. In (18), V is the launcher’s velocity, σ is the altitude-dependent turbulence
intensity, and Lw is the turbulence scale length. For the analysis, the values for σ are interpolated over
altitude, based on the data for severe turbulence provided in [25]. Contrary to [25], the turbulence
scale length is chosen to five-times the recommended value, i.e. Lw = 2629.2m. This results in
longer turbulence gusts, which are more critical in the context of the analyzed trajectory disturbances.
According to the analyzed trajectory segment, the value of Lu is not altitude dependent following
[25].

4.3.2 Wind Filter Linear Analysis

As a consequence of the discussed norm bound on the input disturbance signal imposed by the strict
BRL, the Dryden wind filter in (18) cannot directly be implemented in the LTV analysis. In [26], a
corresponding modification of the Dryden filter is introduced. It consists of a pre-filter (high-pass)
and a scaled LTV formulation of the Dryden filter (18) Gw,LTV :

ẋw(t) =
[

0 1

−( V (t)
Lw(t))

2
−2

V (t)
Lw(t)

]
xw(t) +

[
0

( V (t)
Lw(t))

2

]
d(t)

wz(t) = kw
[
σ(t)

√
Lw(t)
πV (t)

σ(t)
Lw(t)
V (t)

√
3Lw(t)
πV (t)

]
xw(t).

(19)

The time constant is increased to 15 s to account for the larger turbulence scale length. Using Gw,LTV

in combination with the pre-filter, the wind disturbance wz in the LTV worst case analysis resulting
from filtering the norm bounded worst case wind input signal d by Gw,LTV has comparable frequency
content and amplitudes as real turbulence.

5 EXAMPLE DESIGN PROCESS INCLUDING LINEAR TIME-VARYING ANALYSES

This section presents an exemplary design process for a space launcher pitch controller. The use of
LTV methods to speed up and enhance the design process by providing fast and reliable feedback
during tuning is demonstrated.

5.1 Control Design

A control system is required to stabilize the inherently unstable launcher dynamics while following
the pitch program. A proportional-derivative (PD) control law is used in the θ channel. Proportional
θ̇ feedback realizes the derivative part which avoids a derivative filter. The α channel only employs
proportional feedback yielding the complete control law:

δTVC,cmd = −KTVC(Kθ̇∆θ̇ +Kθ∆θ +Kα∆α), (20)

where KTVC is the TVC servo-amplifier, Kθ̇ the rate gyro, Kθ the orientation gyro, and Kα the angle
of attack sensor gain. No gain-scheduling is employed. This particular control scheme is chosen as
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Table 1: Controller gains used for the analysis

Controller KTVC Kθ̇ Kθ Kα

Stable 1.2 0.4 1.5 0.15

Unstable 0.8 0.4 1.0 1.6

it minimizes the vertical trajectory drift under wind disturbance. Two sets of gains are calculated
following [27, Chapter 3]. The first set corresponds to stable closed loop dynamics over the whole
trajectory. The second set provides closed loop dynamics with an unstable flight path pole along the
complete ascent. This design relates to a so called drift minimal condition and promises significantly
better drift performance. Both designs have comparable closed loop bandwidth along the trajectory
(ranging from 5.2 rad/s to 8.4 rad/s). Table 1 summarizes the two gain sets. The performance of both
controllers has to be evaluated to chose a design and proceed with the development process. As one
of the closed loop systems is unstable, classical LTI methods are not applicable. Hence, simulation-
based methods like Monte Carlo simulations present the only viable option in industry today. Finite
horizon LTV analyses are not restricted to ”stable” dynamics and can therefore present a valuable
complement to simulation-based methods.

5.2 Analysis Setup

The general analysis structure for the proposed control design is shown in Fig. 4. In the nonlinear

ELV
C

Wind
[θb, θ̇b, α]

−

yp
d/nw

Figure 4: General analysis interconnection used for nominal launcher analysis

analysis, the ELV-block is described by the nonlinear dynamics (13) in section 4.1. Additionally,
the Wind-block represents the unscaled wind filter Gw, with white noise input nw(t). Depending on
the test case, block C represents the stabilizing or non-stabilizing controller with the gains provided
in Tab. 1. Identical controllers are used in the linear and nonlinear analyses. Furthermore, the
performance output yp includes the signals ∆Qα (aerodynamic load), ∆θ (pitch angle deviation), ∆ż
(vertical drift rate), and ∆z (vertical deviation form trajectory).
In case of the LTV analyses, the ELV-block describes the linear dynamics in introduced in section
4.2. Furthermore, the scaled wind filter Gw,LTV with pre-filter is applied with input d.

5.3 Nominal Performance Analysis

A nominal formulation of Theorem 1 (see, e.g., [12]) is used to calculate the nominal finite horizon
worst-case L2[0, T ] to Euclidean gain. The (nominal) finite horizon worst-case L2[0, T ] to ‖e(T )‖2

gain can only upper bound the performance output yp at the respective terminal time T . Therefore, it is
necessary to analyze a set of terminal times covering the trajectory. The LTV analysis is performed on
final times Ti in the interval [30 s, 95 s] with a step size of 5s. For this grid, the scalings kwi of Gw,LTV

for each time interval [0, Ti] are calculated by the procedure proposed in [26]. The upper bound γ
on the nominal performance metric is based on the existence of the nominal form of the RDE in (7)
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Table 2: Comparison of worst-cases identified by LTV and most critical Monte Carlo analysis results (MC)

Qα[Pa◦] ∆θ[◦] ∆ż[m/s] ∆z[m]

LTV MC LTV MC LTV MC LTV MC
Kα = 0.15 4.6 · 105 1.8 · 105 1.9 0.8 18.2 9.9 409.7 327.7
Kα = 1.6 2.6 · 105 1.0 · 105 5.1 1.9 3.4 1.7 153.3 72.0

over the full horizon [0, T ]. Thus, the worst-case γ can be easily calculated via bisection.The RDE
is solved using the Matlab internal ode15s solver for stiff ordinary differential equations (ODEs)
using its default settings. Fig. 5 shows the results of the LTV analysis for both control designs. The
points in time in-between the analysis grid are linearly interpolated.
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Figure 5: Nominal analysis results: Monte Carlo drift minimal ( ), LTV drift minimal ( ), Monte Carlo
stabilizing controller ( ), LTV stabilizing controller ( )

The LTV analysis provides direct feedback on the influence of the controller design updates. A com-
parison of the results for both controllers (summarized in Tab. 2) shows a noticeable reduction in the
maximal drift and drift rate from the trajectory in the nonlinear analysis (∆ refers to the deviation
from the values on the nominal trajectory at a time t). The calculated worst-case drift rate and drift
reduce from to 18.2 m/s to 3.4 m/s and 409.7 m to 153.3 m, respectively using the drift minimizing
design. This relates to a reduction of the drift and trajectory offset by a factor of 5.4 and 2.7, respec-
tively. As the launcher actively steers into the wind, the maximum pitch angle error ∆θ increases
from 1.9◦ to 5.1◦. The maximum aerodynamic load reduces using the non-stabilizing controller from
4.6 · 105Pa◦ to 2.6 · 105Pa◦. The main reason is that the controller steers the launcher into the wind
reducing the angle of attack α. The complete LTV analysis was finished in 3 min using a standard
desktop computer.
Afterwards, a Monte Carlo simulation of the nonlinear model is conducted in Matlab Simulink using
the corresponding analysis interconnection in Fig. 4. The simulation starts at ts = 25s and ends
at tf = 95s after lift-off. 5000 unique white noise signals nwi(t) are evaluated. This analysis took
2h10min on the same computer for this relatively small disturbance set. Fig. 5 compares the MC
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results to the LTV analysis. The LTV worst-case envelopes encloses all signals of the Monte Carlo
simulation. Focusing on the stabilizing controller. The Monte Carlo results for ∆Qα and ∆θ for
time after 60 s are almost identical to the corresponding LTV worst-cases, which upper bounds the
MC with by narrow margin. The reducing wind influence causes the narrowing margin. Regarding
the non-stabilizing controller, the LTV provides an upper bound for all performance metrics. As
can be seen from Tab. 2, the LTV analysis predicts the influence of control design changes with
good accuracy. For example, the drift reduces by a factor of 4.6 using the drift minimizing design,
which is close to the predicted factor of 2.7. The degradation in drift rate performance by a factor
of 5.8 is also well predicted by the LTV analysis. The latter also yields a degradation of 5.4. Thus,
the finite horizon LTV approach demonstrates its suitability for analyzing unstable dynamics and
providing a fast estimate of the system performance as it accurately matches the actual system’s
behavior. Moreover, the LTV analysis predicts the relative changes in performance between the two
control designs with high accuracy.
It can be concluded that the nominal LTV analysis provides direct and reliable feedback on the in-
fluence of controller design changes. This feedback is provided in a matter of minutes rather than
hours. Thus, significantly more control designs can be analyzed in the same amount of time leading
to a more efficient control design process.

5.4 Robust Performance Analysis

The next step after choosing the preferred drift-minimal control design is to evaluate its robustness
with respect to perturbations in the system dynamics. Common robustness measurements include
classical gain and phase margins. These margins quantify the maximum (individual) gain or phase
perturbation that a single closed-loop may withstand before becoming unstable. They do not require
specific, detailed uncertainty models and, hence, these margins are easy to evaluate. Additionally,
engineers have significant experience on the interpretation of the analysis results. Symmetric disk
margins (see, e.g., [28]) permit simultaneous perturbations in both gain and phase inside a predeter-
mined disk. It is typical to simply evaluate these types margins at ”frozen” points along the trajectory
using LTI methods. However, this fails to capture the nature of the ascent problem and prohibit
unstable dynamics and thus the drift minimal design entirely.
However, a disk margin-like perturbation can be easily integrated into the closed loop using a dy-
namic uncertainty ∆, with ‖∆‖∞ ≤ b ∈ R+. The norm bound b of ∆ relates to a gain pertur-
bation of in the interval [1−b

1+b
, 1+b

1−b ]. The simultaneous phase perturbation is confined to the interval
[−2 tan−1 b, 2 tan−1 b]. Hence, this perturbation type can be analyzed inside the IQC LTV framework
relating to a ”classical” margin analysis with easy interpretable results. Fig. 6 displays the analysis in-
terconnection for an input disk margin. Besides adding the disk-margin interconnection, the analysis

ELV
∆

C

Wind
[θ, θ̇, α]

−

ypd/nw
w

v

Figure 6: General analysis interconnection for margin analysis

setup remains unchanged compared to section 5.2. However, only the drift and drift rate are analyzed
for brevity.
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The interconnection in Fig. 6 has to be transfered into the IQC framework as described in Section
3.2. The dynamic LTI uncertainty ∆ is represented by the IQC description from Example 3.1. For the
present analysis, ρ is chosen to −1 and ν to 0.01.
As its nominal equivalent, the finite horizon worst-case L2[0, T ] to Euclidean gain can only upper
the performance signal at the final time T . Thus, the same restrictions apply and the performance
is evaluated at on the same analysis grid. The analysis is repeated for increasing uncertainty norm
bounds to evaluate the performance degradation of the system. The norm bounds increase from
b = 0.10 by a step size of 0.01 until the algorithm fails to provide a feasible γ on an interval [0, Ti].
The latter corresponds to the performance metric growing out of bounds indicating a departure of the
launcher.
The Log-L-Shade algorithm calculates the respective upper bounds ∆zWC,i and ∆zWC,i for a given b
and Ti. Fig. 7 shows the LTV IQC analysis results, where points in-between the analysis grid are
linearly interpolated. The maximum b for which the analysis can be completed is 0.16. This value
corresponds to a simultaneous gain and phase perturbation of ±2.8 dB and ±18.2◦, respectively. For
b = 0.17, the analysis fails to calculate a feasible γ value starting from Ti = 40 s The worst-case
drift and drift rate are 774 m and 24.7 m/s, respectively. Thus, the performance degrades by a factor
of 5.1 for the drift and 7.3 for the drift rate. This severe performance degradation shows the designs
sensitivity with respect to simultaneous gain and phase perturbations. The complete analysis for a
norm bound of 0.16 required 43 min on the same computer.
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Figure 7: Results analysis with uncertainties: Monte Carlo Drift Minimal ( ), LTV Drift Minimal ( )

A Monte Carlo simulation of the full nonlinear model extended with a disk margin type uncertainty
validates the LTV IQC approach. Note that the dynamic uncertainty ∆ represents an arbitrary stable
and causal LTI system with ‖∆‖∞ ≤ b. Hence, it requires a suitable parameterization for implemen-
tation. In this example, it is parameterized by 100 unique fourth-order LTI systems. The analysis is
conducted over all parametrizations of ∆ evaluated for each wind signal used in the nominal analysis.
Fig. 7 shows the envelope of all Monte Carlo simulations up to b = 0.16, i.e. the maximum norm
bound of the LTV IQC analysis. The maximum absolute drift off the trajectory is 136 m, which corre-
sponds to a performance degradation by a factor of 1.9. In case of the absolute drift rate, the identified
maximum is 4.8 m/s 42 s into the ascent, i.e., a degradation by a factor of 3. The norm bound was
further increased until the first departure occurred for b = 0.21 at t = 32 s in to the flight. This b
corresponds to a simultaneous gain phase perturbation of ±3.7 dB and ±23.7◦. However, oscillations
in the pitch angle occurred from b = 0.18. Note that the Monte Carlo simulation appears less con-
servative due to the small wind disturbance and limited uncertainty set. However, the analysis still
required approximately 2 and a half days parallelized on two standard desktop computer (identical to
the previous analyses) for a single norm bound.
The LTV IQC analysis gives a good prediction of the (relative) performance degradation and provides
an upper bound for the nonlinear analysis in a fraction of time. It also predicts the maximum tolerable
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simultaneous gain and phase perturbation before a potential loss of the launch vehicle with good
accuracy.

6 CONCLUSION
The paper demonstrates how modern LTV analysis methods can be used in the control design pro-
cess of space launcher. Finite horizon LTV methods capture the behavior of the launcher along the
trajectory accurately. Thus, they provide fast, reliable, and interpretable information about the effects
of control design changes on the nominal and robust performance. As a complement to standard
simulation-based methods, LTV methods can significantly accelerate the design process of which
customers of ASTOS solutions will benefit.
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