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ABSTRACT

This paper addresses the discussion of the complexity and level of detail of the 3D model of a
target satellite that is required in order to get a stable and accurate relative pose estimation with
monocular cameras during an On-Orbit Servicing (OOS) mission scenario. We assume to know
the target 3D mesh with thousands of vertices before the mission takes place. Nevertheless, for
on-board pose estimation we have to use compact 3D models of the targets with only some key
points. In this paper we compare the pose estimation results using three models for tests. The first
model has manually extracted key features, where the second one includes only features extracted
with Harris3D technique. The third model includes a part of Harris3D key features and some
manually selected points. The offline pose estimation tests were using the data from European
Proximity Operations Simulator (EPOS) facility.

1 INTRODUCTION

Visual navigation is part of complex procedures during rendezvous and proximity operations in On-
Orbit Servicing (OOS) missions. In particular, the estimation of the space target’s pose (position
and orientation) in close range presents a challenge. Different factors influence the accuracy of a
visual pose estimation. One of them is the uncooperativeness of the space object, it does not have a
communication link or any navigation aid reflectors. Moreover, if this space debris has been staying
for a long time in space, we have to consider an aging process and maybe also a loss of some object’s
parts.

Usually monocular cameras and LIDARSs are used for pose estimation in real missions. Researchers
all over the world develop and improve image/point cloud processing techniques for pose estimation
[1][2][3][4]. There are two main groups: Deep Learning (DL) and traditional image processing (TIP).
The trendy first group DL has gained a big popularity in the last years and has shown its pros and
cons in different applications. O’Mahony et al. [5] give an imposing comparison of DL versus TIP
techniques. DL techniques are trained and not programmed, therefore require less fine tuning. Neural
networks even discover the common underlying pattern of the input dataset and automatically provide
the set of features with respect to the specific object. In case of TIP, the feature extraction process and
parameters tuning are a long trial for a development team. On the other side, if training data of DL is
poor or differ from the real (testing) images, the trained model could not perform well and it is almost
impossible to tweak its parameters. DL requires high computing power, which is not available on the
on-board computers of the current generation of satellites. For example, in the experiments that have
been flown to demonstrate the autonomous visual rendezvous, a rough target identification process
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using a histogram analysis with FPGA was performed [6]. Recently, Ekblad et al. [7] have already
experimented to run DL techniques for future missions with space-grade Xilinx Versal FPGA. They
proposed some ideas for performance improvements. First one is an acceleration of post processing
using parallelization techniques. Second one is a pipelining, when the on-board’s DPU and CPU work
both on something in parallel.

In current research, we rely on TIP techniques and develop software for visual navigation with monoc-
ular cameras. In our previous work [8], we have introduced a robust feature extraction technique for
relative pose estimation. Since we want our method be applicable for different approaches (such as
fly-around or straight-line approach) with tumbling targets, we have done many closed-loop exper-
iments with EPOS. Through some experiments, it has been found, that not only image processing
affects the final result of the relative pose. The configuration of the key features of the known 3D
model of the target has also its impact. In this paper we are going to present the experimental results
of the offline tests of pose estimation technique with three setups of target key features. The images
and ground truth were collected at the EPOS laboratory.

2 MATERIALS AND METHODS

2.1 Key Points Extraction

The process of key points extraction from 3D models is a very challenging task. There is no strict
definition how the interesting key features should be defined. In most cases it is dependent on the
features, which are going to be detected on the space object. Very common features are corners or
lines of the spacecraft, which can be detected from the visual data for further matching. Considering
these parts, we have to build a 3D key features of the target accordingly. Moreover, the following
issues listed below make the task even more difficult.

- The space debris might have a tumbling motion in space. The completeness of the key features
model must be sufficient for the developed pose estimation technique to track it from different
approach angles, while a subset of the features could be hidden behind the target.

- The up-to-date target model may be only available during the mission, e.g. reconstructed after
an inspection phase. When we are still on the ground, we can only have an approximate 3D
model of the target. Then the question arises — how do we select the model key points on the
ground before the OOS mission takes place, if these points could be no more existent on the
real space object? Ideally, re-selection of the feature points based on the updated model would
happen in an automatic way.

- The image processing task is a challenge in space, because of the limited computing power of
an On-Board Computer (OBC). Ideally the feature points extraction from a 2D image with its
following matching should be executed with a few times per second.

2.2 Simplified Models

Let us present a 3D model we are working currently with in Figure 1. The mockup geometry is
similar to that one, which was planned to use in DEOS mission [9]. The corresponding model is in
STL format and has more than 42k vertices and 78k faces. The shape of the space target mockup is
complex. It consists of the hexagon part, a nose cone and a disc with an octagon frame. The surface
properties of this mockup are representative for the real satellite. The MLI material is used on the
frontal hexagon part, whereas six side panels are solar panels.
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Figure 1: Both images: initial 3D model in .stl format is presented from different views.

Having a look at the constrains described above in section 2.1, we are not able to take the current
huge 3D mesh for further processing. Therefore, we have to choose only some main key points from
this 3D mesh.

Three simplified 3D models of key points are presented in Figure 2 and used to track the target object.
The pose estimation results for the tracking are presented in section 3.

Key points extracted manually Keypoints extracted with HarrisaD Keypoints extracted with Harris3D + manually

(@ (b) (c)

Figure 2: Three types of key points: (2a) manually extracted; (2b) with Harris3D algorithm; (2c)
Harris3D + manually

The model with manually extracted key points in Figure 2a considers the corners of the hexagon and
octagon, as well as the cone part. In Figure 2b the key points have been extracted using HarrisKey-
point3D [10] function from PCL library [11]. This function needs two input parameters besides the
original model - radius for normal estimation and threshold for filtering out weak corners. The key
features from the Figure 2b were extracted with radius = 35.0 mm and threshold = 0.000001. The
third model of key points in Figure 2c¢ contains the whole hexagon part extracted with HarrisKey-
point3D and a minimized set of manually selected points of the octagon. The idea to create the third
model appeared after processing and analyzing the pose estimation errors with the first and second
models. As it was already mentioned in introduction, the final decision for extraction of key features
in traditional image processing techniques is up to the developer.
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2.3 Pose estimation

In this work we consider the pose estimation only with a monocular camera. The process to estimate
the position and orientation of the space object via gray scale images consists of several steps and
already was presented in [8]. The image is processed with Hough Line Transform (HLT) [12] and
Shi-Tomasi (ST) [13] feature detector algorithms. The HLT transform delivers the straight lines,
where only the end points of these lines are taken for the following matching. The end points of HLT
and corners from ST detector organize a big set of 2D image points. The next step is feature matching.
In the feature matching step, the simplified 3D model from Section 2.2 is projected onto image plane
and is aimed to find the nearest image point. Thereafter the EPNP solver [14] calculates the relative
position and orientation of the space object.

3 RESULTS

The Hardware-in-the-Loop (HiL) European Proximity Operations Simulator (EPOS) simulator lo-
cated at German Aerospace Center [15] is used for simulation of different approach scenarios. We
present here experiments of the straight line approach and a fly-around. The sketch of the experiment
is presented in Figure 3. Let us define Test I as a straight-line approach rendezvous from 10 m to 4 m,
with an approach velocity of 2 cm/sec; Test Il is a fly-around with an azimuth « changing from 86°
to 50° and back to 77°. The target mockup rotates with 1 deg/sec along it’s principal axis (see Figure
3) during all simulations.

Servicer

Fly - around
a
A  Principal axis
Ly X a=90’
d
|
4m Straight - line approach 10m

Figure 3: Sketch of the experiment.

The image data was collected from wide field-of-view (WFOV) camera Prosilica GT205. The char-
acteristics of this visual sensors are presented in Table 1.
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Table 1: Cameras characteristics

Name WFOV

Model Prosilica GT2050
(02-2626A)

Pixel size [pum] 5.5x5.5

Sensor field [pixel] 2048 x 2048

Focal length [mm)] 12.5

FOV [°] 47 x 47

Test I: straight-line approach

In Figure 4 the position (first three rows) and angular (last row) errors for three different configurations
of key features during straight-line approach are presented. The dark red (blue) line in the plot for
the position (angular) errors is a moving average. It is plotted over an error band limited by the
moving minimum and moving maximum, which are colored in black. The data were filtered with
a 20-points filter window. In all cases, the position error slightly drops with the decreasing distance
between chaser and target. In the test with Manual and Harris3D+Manual extracted points, the jumps
of position errors occur and are around 0.4 m. Nevertheless, it has not affected the stability of the
tracker. Angular errors are calculated as an angular difference between two quaternions - the ground
truth orientation and estimated one. During the whole straight-line approach, the average angular
errors are not higher than 3 deg. There is a jump of 7 deg with Harris3D+Manual extracted points at
9.5 m relative distance, which caused an error of X position error around 0.4 m.

Test II: fly-around

The fly-around case is more sensitive to errors than the straight-line approach. During the fly-around
the relative distance is kept constant to 5.9 m. It can be noticed (see Figure 5) during the test with
Manual and Harris3D models, that the peaks in angular errors lead to the position errors. For exam-
ple, the angular error with a jump up to 14 deg with Harris3D model provoked errors with a magnitude
of 0.4 m in distance component along X axis, 0.1 m along Y axis and also 0.05 m along Z axis. From
the plots with Harris3D model, it is evidently shown, that the fly-around motion before this case was
stable with an average 0.1 m errors along X axis. The motion with the Manual model has higher
magnitudes of maximum errors up to 0.2 m. (see e.g. by azimuth 83° and 57°), even when the angular
error is not higher than 3 deg. When the angular error jumped up to 9 deg, increased the position
errors respectively: X error is 0.58 m, Y error is 0.2 m and Z absolute error is 0.15 m. The fly-around
with Harris3D+Manual model provided a better and stable results. The angular error of 8 deg led to
0.2 m the absolute position error X, 0.05 m Y error and 0.03 m Z error. The cross correlation between
the maximal observed angular error and the position error is minimal with Harris3D+Manual model
compared to the other models.
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In Table 2 we provide statistical analysis of estimated distances with respect to the recommended
accuracy according to [16], which is 1% of range. For the Test I, the maximum and minimum per-
centages of acceptable distances were identified with Manual model and Harris3D models, 91.1 %
and 77.3% respectively. Nevertheless, for Test II, we observe completely different results. The max-
imum percentage of safe measurements belongs to Harris3D+Manual model and is 81.7%. The
Manual key features model gained 17.2%. It is a minimum percentage of measurements, which are
inside of the tolerance range. The total statistic for Test I and Test II shows that the more accurate
estimation of relative distance occurred with Harris3D+Manual key features model.

Table 2: Percentage of measurements within a safe region (1% of range)

Model Name Test I, [%] | TestIl,[%] | Total, [%]
Harris3D 77.3 76.7 77.1
Manual 91.1 17.2 64.7
Harris3D + Manual 85.6 81.7 84.2

4 CONCLUSIONS

In this paper we focused on the problem, how complex should be a 3D model of key features for pose
estimation. We arranged two experiments (straight-line approach and fly-around), where we tested
three configurations of model points. The first model is Harris3D used the automatic Harris3D key ex-
traction technique; the second one is Manual with hand extracted key points; and Harris3D+Manual
model contains both (automatically and manually key points). The most important conclusion from
the results: not in all simulation cases the same 3D key features model gives good results. How-
ever, the tracking with Harris3D+Manual model showed the best performance for a fly-around and
straight-line approach scenario used in this paper.

Since we want our technique for pose estimation be applicable and stable for different approach
scenarios, there is a big need for automated testing. We are going to work on it in the near future.
It will help us to test all three key features models with other image data sets for a more accurate
assessment.

REFERENCES

[1] K. M. Kajak, C. Maddock, H. Frei, and K. Schwenk, “Domain randomi-
sation and cnn-based keypoint-regressing pose initialisation for relative naviga-
tion with uncooperative finite-symmetric spacecraft targets using monocular cam-
era 1images,” Advances in Space Research, 2023. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/S0273117723001436

[2] A. Lotti, D. Modenini, P. Tortora, M. Saponara, and M. A. Perino, “Deep learning for real-time
satellite pose estimation on tensor processing units,” Journal of Spacecraft and Rockets, vol. 0,
no. 0, pp. 1-5, 0. [Online]. Available: https://doi.org/10.2514/1.A35496

[3] L. Renaut, H. Frei, and A. Niichter, “Smoothed normal distribution transform for efficient point
cloud registration during space rendezvous,” in Proceedings of the 18th International Joint Con-

ESA GNC 2023 — Ksenia Klionovska and Matthias Burri 8



ference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume
5: VISAPP, INSTICC. SciTePress, 2023, pp. 919-930.

[4] G. Napolano, C. Vela, A. Nocerino, R. Opromolla, and M. Grassi, “A multi-sensor optical rela-
tive navigation system for small satellite servicing,” Acta Astronautica, 2023.

[5] N. O. Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. A. Velasco-Hernandez, L. Kr-
palkova, D. Riordan, and J. Walsh, “Deep learning vs. traditional computer vision,” in Computer
Vision Conference, 2019.

[6] S.Kimura, Y. Horikawa, and Y. Katayama, “Quick report on on-board demonstration experiment
for autonomous-visual-guidance camera system for space debris removal,” Transactions of the

Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, vol. 16, pp.
561-565, 09 2018.

[7]1 A. Ekblad, T. Mahendrakar, R. T. White, M. Wilde, 1. Silver, and B. Wheeler,
“Resource-constrained fpga design for satellite component feature extraction,” arXiv preprint
arXiv:2301.09055, 2023.

[8] K. Klionovska, M. Burri, and H. Frei, “Robust feature extraction pose estimation during
fly-around and straight-line approach in close range.” in 16th Symposium on Advanced
Space Technologies in Robotics and Automation (ASTRA 2022), 2022. [Online]. Available:
https://elib.dlr.de/187326/

[9] T. Wolf, D. Reintsema, B. Sommer, P. Rank, and J. Sommer, “Mission deos proofing the capa-
bilities of german’s space robotic technologies,” in International Symposium on Artificial Intel-
ligence, Robotics and Automation in Space—i-SAIRAS, 2012.

[10] I. Sipiran and B. Bustos, “Harris 3d: A robust extension of the harris operator for interest point
detection on 3d meshes,” The Visual Computer, vol. 27, pp. 963-976, 11 2011.

[11] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE International
Conference on Robotics and Automation (ICRA). Shanghai, China: IEEE, May 9-13 2011.

[12] P. V. Hough, “Method and means for recognizing complex patterns,” 12 1962. [Online].
Available: https://www.osti.gov/biblio/4746348

[13] J. Shi and Tomasi, “Good features to track,” in 1994 Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, 1994, pp. 593-600.

[14] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution to the pnp problem,”
International Journal of Computer Vision, vol. 81, no. 2, p. 155, Jul. 2008.

[15] F. Rems, H. Frei, E.-A. Risse, and M. Burri, “l10-year anniversary of the european
proximity operations simulator 2.0 - looking back at test campaigns, rendezvous research and
facility improvements,” Aerospace, vol. 8, no. 9, p. 235, August 2021. [Online]. Available:
https://elib.dlr.de/143624/

[16] W. Fehse, Automated rendezvous and docking of spacecraft, ser. Cambridge Aerospace Series,
M. J. Rycroft and W. Shyy, Eds. Cambridge University Press, 2003.

ESA GNC 2023 — Ksenia Klionovska and Matthias Burri 9



