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2023 PDC Asteroid Impact “Epoch 1" Scenario

Entry modeling and probabilistic risk assessment ARC/TNA
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See Wheeler et al. PDC2023 for details of Epoch T analysis



Asteroid Properties

Statistical analysis and Bayesian inference to determine likely asteroid properties

ARC/TNA

. Epoch 2 PDC2023 remains faint Mean 25% Median 50% /5% 68% (most likley)
) )

e 9, _ Albedo 0.13 0.04 0.09 0.17 0.01 - 0.15
which inform inference for Diameter @ [m] 721 434 617 901 294 - 880
taxonomic class, density and Density [g/cc] 2.2 1.6 2.0 2.5 1.3-26
strength Mass [kg] 85x1011 | 96x1010 | 25x101" | 7.5x10"1 | 4x109-5.4x10"

Energy [Mt] 16000 1800 4900 14000 /6 - 10000
» High-fidelity simulations will focus
(1 . ) 0
on upper end ot “most likely” (687%) Property Distributions (Wheeler: PDC2023 & Dotson: PDC2023)
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2023 PDC Entry Angle Map for Africa

Entry and Energy Deposition

Detailed selection of entry parameters for nominal impact case

ARC/TNA

» Chose nominal impactor to be near large end of the 68%
“most likely case” from risk assessment

- H-mag 19 & albedo 0.069
- Nominal impact case is 800m diameter @ 12.67km/s
- Oblique entry at 2 =54° from horizon

- Modeled entry in FCM to get details along trajectory

. Kinetic energy at entry, Etot = 10.3 Gt % T r
~1.68 Gt deposited into atmosphere (16.36%) 70t * Peak Edep: 0 km, 16.36% Energy |-
| I 10% Energy Alt: 3.14 km
~8.61 Gt of ground-impacting energy (83.64%) 60 |

- FCM entry modeling parameters shown at right 50 | @ = 800m

|V = 12.673km/s
X =54°
30 o =2.0g/cc
| Strength = 2MPa
| Porosity = 30%
- Weibull = 0.2

. Energy = 10.3Gt at entry
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Asteroid Threat Assessment Project (ATAP), PDC 2023 Energy Deposition (kt/km)
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» Impact in Nigeria has total affected population ~ 10 M
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Solver Overview: Cart3D

Production solver based on cut-cell Cartesian mesh method
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» Originally developed for aerospace applications
» Fully-automated mesh generation for complex geometry

» Inviscid solver using Cartesian cells
— Fully-conservative finite-volume method
— Multigrid accelerated 2nd-order upwind scheme
— Dual-time approach for unsteady simulations
— Domain-decomposition for good parallel scalabillity

* All runs are full 3D
« 220-330M cells with 20-30k time steps

» Excellent scalability
— Typical airburst simulations take 8-16 hrs on ~4000 cores

» One of NASA’s most heavily used production solvers,
large validation database, 900+ users

» Good comparisons w/ CTH, xRAGE & ALE3D at the 2016
Tsunami Workshop

Asteroid Threat Assessment Project (ATAP), PDC 2023




Solver Overview: Cart3D

Extensive Validation for airburst and entry simulations

ARC/TNA

Chelyabinsk Ground Footprints

Chelyabinsk airburst: AIAA Paper 2016-0998, Jan 2016

» Originally developed for aerospace applications “0f- - o
BRSPS 0\ 0y © e}
» Fully-automated mesh generation for complex geometry O unbroken
- Inviscid solver using Cartesian cells 35prrerrrrr— Mt Spherical Blast ...
0 — a3
— Fully-conservative finite-volume method : |
20 Chebarku?

— Multigrid accelerated 2nd-order upwind scheme
— Dual-time approach for unsteady simulations

Overpressure (%)

— Domain-decomposition for good parallel scalability g
0f
- All runs are full 3D 3| e
-10( 4 ,
» 220-330M cells with 20-30k time steps 20 e e BT Overpressure Glass Damage g
. Comparison with xRAGE (DoE) gl Soe T K
* Excellent soalablllty at 2016 Tsunami Workshop ' 4
— Typical airburst simulations take 8-16 hrs on ~4000 cores ' -'~-
Chelyabinsk &

» One of NASA’s most heavily used production solvers,
large validation database, 900+ users

» Good comparisons w/ CTH, xRAGE & ALE3D at the 2016
Tsunami Workshop
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2023 PDC Impactor — Simulation setup

54° entry of @ 800 m, asteroid at 12.673 km/s, p = 2000 kg/m3

* Entry profile from FCM with deposition of mass, momentum & energy

* Evot = 10.3Gt, ~200 times more energy than median 2021 PDC case
- 16.36% (1.68 Gt) of Etot released in atmosphere
- 83.64% (8.61 Gt) of Etot remains at impact

 Impact Modeling
— Model impact as entry + detonation

— 2018 studies with ALE3D (Robertson) indicate 3-5% of impact energy
couples to airblast

Entry Profile: energy, mass & velocity

Computational domain (not to scale)

« 640 km

+

12.673 km/sec
95 km 54° Entry

1.68 Gt released in atm
8.61 Gt remains at impact

Starting
54° altitude 70km

v Sea Level v

>
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FCM Entry Profile: 2023 PDC

2023 PDC Nominal Impactor

I 10% Energy Alt: 3.14 km

* Peak Edep: 0 km, 16.36% Energy |-
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Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s

» 1.68 Gt energy deposited during entry
— Very strong atmospheric blast
— Ground impact at elapsed time t = 6.62 s

» Impact energy is 8.61 Gt
— 95% goes into ground
— ~5% (430.5Mt) couples to atmosphere
— Impact modeled as detonation (430.5 Mt) near ground

- Simulation spans more than 20min of real time to observe
atmospheric response

— Blast first reaches downrange domain boundary (320km
from impact) about 12 min after entry

Asteroid Threat Assessment Project (ATAP), PDC 2023
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Local Mach Number 54¢ entn’ @ 800 m asteroid at 12.67km/s

40 Km

30 km




Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s ARC/TNA

 [so-Mach contours g &
sqrt(Mach) 0 02 04 06 08 1 12 14 16 18 2 160

- Blast from entry corridor and :
impact disrupts entire /3 1®
atmosphere [ B
* Supersonic spreading at B N o S T 3
altitude creates oblique %
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Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s ARC/TNA

Footprint of Peak Ground Overpressures

320
- Ground overpressure footprint evolves for over ! psi <
12 mins to cover 640km?2 of terrain =0
240
» 10 psi contours nearly circular, mean radius of 74 km Ovarp(re§sure
200 %
- Lower overpressure contours slightly elliptical due to 60 256
obligue entry
120 128
 1psi contour driven by oscillation of the atm & 64
extends > 320 km to domain boundary c 50
= 40 32
)
% ; 16
= 8
= -40
Mean blast Area S e 4
radius (km) (km?) 2
-120
S ETAELG R 10 psi 74 17,203 1
-160
Critical 4 psi 155 75,477 200
Severe 2 psi 235 173,494 240
280 =)
Serious 1 psi > 320 > 321,700 o mif
920 320 280 240 200 160 120 80 40 0 -40 -80 -120 -160 -200 -240 280 -320 -360
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Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s ARC/TNA
Peak Wind Speed

320 ¢

» Wind is supersonic for over 15 km from impact
280

» Category 5 winds extend 80-100 km from impact _

» Category 1-2 winds extend 180 km from impact and
sustain for several minutes

200 V| mph

160 640
» Speeds near edge likely contaminated by domain - 320
boundary conditions a0 540
o . . £ 160
Saffir-Simpson Hurricane wind scale = & 120
S 0
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Lamb Wave Formation
54° entry of @ 800 m, asteroid at 12.67 km/s

- Can compute the expected period of a Lamb
wave from detonations in the atmosphere as a
function of the energy released (Revelle, 1996)

* Well known, and is basis for
- CTBT infrasound monitoring
- Infrasound estimates of bolide energy release

» Observed oscillation period of upper atmosphere
iIn simulation is around 180-240s

- Total energy in simulation is sum of E-dep during
entry + energy coupling to airblast at impact

- Observed frequency in simulation matches
classical prediction extremely well

Hunga-Tonga eruption in 2022 (VEI 5-6) created Lamb
wave with max. overpressure of 780Pa.

2023 PDC impact is at least an order of
magnitude more energetic
— Will resonate around the globe for several days
— Potential for triggering tsunamis far from impact

| added | 1mxic®

ARC/TNA

Source Energy as a function of Lamb wave Period,
m=2XRo; n=2XRo

Total ,xwa
energy 1x1o7

Source Energy: kt
X
0
..l.anLuM

Blast scaling
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1x1071%4 P e — T e T
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Revelle & Whitaker, “Lamb wave from airborne explosion sources: Viscous effects and
comparisons to ducted acoustic arrivals.” LANL Report, LA-UR-96-3594, Dec. 1996 14



Thermal Radiation

|

1-D radiation analysis T[K] 100 300 500 700 900 1100 1300 ARC/TNA
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Downrange distance, [km]

- Wide flat atmospheric slab (640 x 640 km) allows use of 1-D radiation approx. via Stephan-Boltzmann Law

- Radiative heatingis ¢q = 50(Tff — Tf)Ah, where o is the Stephan-Boltzmann constant, Th = Thot gas, Tc = Tambient

- Used emissivity, €, of 0.1 for hot air

 Gives heating of approx. q = 77 Watts/m?

* Be
* Be

ow threshold to ignite forest floors and damp leaves (Durda & Kring, 2004)

ow ignition threshold of fescue grass, pine needles & paper (Pitts, 2007)

Not enough energy to ignite entire domain, but easy to see
that with a little more energy, or earlier in the evolution,
significant regions of the domain could ignite.
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Summary

ARC/TNA

- Probabillistic risk assessment and statistical inference was used to develop a nominal impactor and entry profiles
for hypothetical asteroid “2023 PDC” in sufficient detail to enable high-fidelity simulation.

- Performed high-fidelity 3D entry simulations for self-consistent @800 m asteroid entering at 12.67 km/s and 54° to
compute ground overpressure footprints and maps of local maximum wind speed to drive hazard modeling using
NASA’s Cart3D simulation package.

- Ground footprints show very large areas of devastation from both blast and wind and generally exceed those
predicted by the fast-running engineering methods in PAIR

Wind Speed
- Mean blast Area e
Blast Severity . ; Hurricane Mean
L alle Category = P ™MPN adius (km)
ULENTVITELI S 10 psi 74 17,203 5 157 95

Critical 4 psi 155 75,477 4 130 140
Severe 2 psi 235 173,494 3 111 155

2 96 180
Serious 1 psi >320 > 321,700 1 74 210

 |In addition to local blast damage:

— Analysis reveals initiation of atmospheric Lamb waves with initial overpressures of ~1 psi which will travel around

the globe for days after impact and raise tsunami threat

— 1-D thermal analysis shows radiation from post-impact energy lingering in upper atmosphere may pose a
credible ignition threat to grasslands and forests throughout the simulation domain

Asteroid Threat Assessment Project (ATAP), PDC 2023
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