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Barbara Pilastre, Loic Boussouf, Stéphane D’Escrivan, Jean-Yves Tourneret; Anomaly
detectionin mixed telemetry data using a sparse representation and dictionary
learning; Signal Processing, Volume 168, 2020
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Anomaly detection in FDIR

* Failure Detection Isolation and Recovery: on-board
systems dedicated for discovery of anomalies and entering safe state
* Current state of the art

* Out-of-limit checks

* Machine learning algorithms, expert systems

* Detailed analysis on the ground
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KP Labs | Antelope: Towards on-board anomaly detection

Anomaly detection in FDIR

* Failure Detection Isolation and Recovery: on-board
systems dedicated for discovery of anomalies and entering safe state
* Current state of the art
* Out-of-limit checks (How about periodic signals? Inter-
parameter relations?)
* Machine learning algorithms, expert systems (Training data?
Parameterization? On-board implementation, e.g., FPGA?)
* Detailed analysis on the ground
* Need access to communication window
* Human analysis and reaction necessary
* Problem for small satellites with small teams and non-
continuous communication
* Data transfer (cost & time; which part of data is ,relevant”?)




2021

KP Labs | Antelope: Towards on-board anomaly detection G‘¢ KP LABS

Mission Complete

Towards on-board anomaly — why?

* Traditional out-of-limit FDIR systems often detect point anomalies only

* Entering safe mode earlier after failure undetectable by basic out-of-limits methods

* Smaller amount of telemetric data sent to Earth — more bandwidth available to other data
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Mission Complete

Towards on-board anomaly — why?

* Can we predict that something bad is about to happen?
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Machine (deep) learning in anomaly detection
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Machine (deep) learning in anomaly detection

Reconstruct
(,predict”) the signal
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Machine (deep) learning in anomaly detection

Reconstruct Compare predicted
(,predict”) the signal and actual telemetry
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Machine (deep) learning in anomaly detection

Correct signal

Reconstruct Compare predicted
(,predict”) the signal and actual telemetry

Anomaly
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Machine (deep) learning in anomaly detection

Correct signal

Reconstruct Compare predicted
(,predict”) the signal and actual telemetry

Anomaly

test_predictions.png

Deep recurrent neural
network-based detector

2021

T T T
0 1000 2000 3000 4000



[ ]
16 KP Labs | Antelope: Towards on-board anomaly detection 6¢ KP LABS

Mission Complete

Machine (deep) learning in anomaly detection
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Telemetry ,ground-truth” datasets

Telemanom (Detecting Spacecraft Anomalies Using LSTMs and Nonparametric
Dynamic Thresholding; Hundman, Constantinou, Laporte, Colwell, Soderstrom; 2018
(NASA Jet Propulsion Laboratory) https://arxiv.org/pdf/1802.04431.pdf)
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Mission Complete

Telemetry ,ground-truth” datasets

Telemanom (Detecting Spacecraft Anomalies Using LSTMs and Nonparametric
Dynamic Thresholding; Hundman, Constantinou, Laporte, Colwell, Soderstrom; 2018
(NASA Jet Propulsion Laboratory) https://arxiv.org/pdf/1802.04431.pdf)

* Few dozens of time series, few thousands of values each, taken from SNAP and MSL
NASA's missions
* Each series is split into training (no anomalies) and test parts (with anomalies)
* Visual inspection shows that training part may contain anomalies
* Data corrupted due to separate train/test normalization
* Models trained on train parts generate values different that in the original paper
* No more public telemetry datasets


https://arxiv.org/pdf/1802.04431.pdf

19

2021

KP Labs | Antelope: Towards on-board anomaly detection

What about using OPS-SAT?

* OPS-SAT is a novel small satellite containing powerful on-
board computer

* Available for execution of code and commands by external
experimenters

* OPS-SAT's telemetry data is freely available to
experimenters

(“s kP LABS

Mission Complete
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OPS-SAT telemetry

* Few thousands of numeric telemetry
series

* Sampling rate 1s - 30s
* Commands sent from ground station

* Discontinuities in data
* Poses problem while processing
with Machine Learning models
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OPS-SAT, April 2021 — multivariate data example

period_s=5,begin=1617654990,length=3862,count=13.csv
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Anomalies (?) in GST1222

Mission Complete

test predictions.png
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train_predictions.png
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Towards digital twins and simulations...
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Towards digital twins and simulations...
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J. Nalepa et al.: Towards on-board hyperspectral satellite segmentation, Remote
Sensing 2021, 13(8), 1532 (https://www.mdpi.com/2072-4292/13/8/1532)
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J. Nalepa et al.: Towards on-board hyperspectral satellite segmentation, Remote
Sensing 2021, 13(8), 1532 (https://www.mdpi.com/2072-4292/13/8/1532)
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Antelope Toolbox
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Measuring the quality of anomaly detection

* Example quality metrics:
* NAB Score (Numenta Anomaly Benchmark)
* Dice coefficient: 2 x|XnY| / (|X]|+]Y])
* F-score and other metrics based on the confusion matrix
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Measuring the quality of anomaly detection

* Example quality metrics:
* NAB Score (Numenta Anomaly Benchmark)
* Dice coefficient: 2 x|XnY| / (|X]|+]|Y])
* F-score and other metrics based on the confusion matrix

* Various metrics are used across papers

* All metrics are designed for supervised set-ups



33

2021

KP Labs | Antelope: Towards on-board anomaly detection

Conclusions

* The community lacks good anomaly detection datasets

* Digital twins and simulations may help us these issues

* The entire process runs in unsupervised mode

rigorous quantitative, qualitative and statistical validation

(“s kP LABS

Mission Complete

* Our anomaly detection looks promising in finding potential anomalies (TBV, e.g., in OPS-SAT)

* Determining metrics to quantify the anomaly detection is a (huge) challenge - we need
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