www.bsc.es

Combining High Performance Hardware and Software
with High Software Assurance:

Is it Possible?

Dr. Leonidas Kosmidis

UNIVERSITAT POLITECNICA P
Supercomputing
@ DE CATALUNYA @ Center September 24, 2025
Centro Nacional de Supercomputacion

:-f;_.;.-, e s e P i il S

Aerospace systémé ruwe high performance ! ! |

(€ Modern and upcoming space systems require increasing levels of computing
power

(€ Traditional space processors cannot provide this performance level
(€ Need for higher performance hardware in space systems

Increase in Complexit

= 2 - I

(€ Modern aerospace systems require new, advanced functionalities

({

({

({

(€ Artificial Intelligence (Al)
(€ High Resolution Sensors
(€ Optical communications
(€ Advanced Robotics...

Advanced functionalities require complex hardware and software compared to
the existing space technologies

High Performance Hardware technologies: Advanced Multi-cores, GPUs, Al
accelerators

Programming high performance hardware requires complex software: parallel
and GPU programming

—f—-'},_____ — _______

Need for High Assurace lce | | | ! !

(Safety Critical systems

({
({
({
({

used in automotive, avionics and aerospace industries
correct and timely execution is important
any malfunction may be dangerous

Compliance with functional safety and quality standards e.g. ISO 26262,
DO-178C, ECSS, NASA-STD standards

-,___A—]—-—l_,‘v —- -

—— —_—-_-——»- ~ —_— 3
How can we ensure h h assurance when CompIeX|ty |Creses

(€ At the High Performance Embedded Systems Laboratory and in the HArdware
Dependability for Embedded Systems (HADES) group we address this issue

({ Build on standardised technologies and reuse
({ Take advantage of different standards across different industries

(€ Modify hardware and software when possible to facilitate standard
compliance

(€ Model-Based Design
(€ Formal Methods
(Safe Languages

— 1 —

—_— —-._—

Challenge: DO- T7'8—5Fert|flcatlon %or GPU code l I

(€ Highest Criticality software (DAL-A) needs to follow software design and coding
standards used in the development of safety-critical systems such as MISRA-C,
Ada SPARK, JPL Institutional Coding Standard and others:

({ Restricted use of Pointers

(€ No dynamic memory allocation

({ Static verification of program properties
(€ Resilience to faults

(€ Fault isolation

..—-“_]-’1_—‘ -

(€ Highest Criticality software (DAL-A) needs to follow sr* (’(\ ‘gn and coding
standards used in the development of safety- Cr* Q(O% - such as MISRA-C,
Ada SPARK, JPL Institutional Coding St=- e(\ ,uners

(€ Restricted use of Pointers C \)ON

(€ No dynamic memor- ?5)\\(

({ Statlc verifir- ‘O\I 9 s1am properties
ev .

({ J.atlon

Modern aircraft use LCD screens which have

({
({
({
({
({

({
({

replaced analog instruments

A320: 4 displays

A350: 6 very large displays

A380: 10 large displays

Newer aircraft feature touch screens

Driven by avionics-grade GPUs

Rely on DO-178 B/C certified graphics software === :

stacks

Modern aircraft use LCD screens which have

({
({
({
({
({

({
({

replaced analog instruments

A320: 4 displays

A350: 6 very large displays

A380: 10 large displays

Newer aircraft feature touch screens

Driven by avionics-grade GPUs

Rely on DO-178 B/C certified graphics software === :

stacks

Modern aircraft use LCD screens which have

({
({
({
({
({

({
({

replaced analog instruments

A320: 4 displays

A350: 6 very large displays

A380: 10 large displays

Newer aircraft feature touch screens

Driven by avionics-grade GPUs

Rely on DO-178 B/C certified graphics software === :

stacks

10

DO-178C Certificatiorready-Graphics-based-G ““““1T

Methods

General Idea:

= Leverage certified graphics-based solutions for the

penGL |G

acceleration of general purpose computing
= Use them directly or

= Build higher level abstractions on top of them [VU|i(an| @

Existing Methods: KH RO NG QUSP
= OpenGL SC 1.0.1 Upcoming Methods:
= OpenGL SC 2.0 = Vulkan SC

N /

= Brook Auto/BRAS| =~ 'ee—) SYCL. |@m

11

= Addresses certification at language level

= Model-based design / correct-by-construction for error prone GPU operations
= Same approach followed nowadays by SYCL

= Open-source GPU programming language for safety critical systems [2]

= Subset of the Brook programming language [1], similar to CUDA

= Restricted subset of C (no recursion, no goto, no pointers, enforcement of loop
bounds)

= Source-to-source compilation to safety critical graphics APIs

= Multiple backends (CPU, multicore, vectorisation, embedded graphics)
= Supports almost any parallel platform considered for safety critical systems

[1] I. Buck et al, Brook for GPUs, SIGGRAPH 2004

[2] Brook Auto: High-Level Certification-Friendly Programming for GPU-powered Automotive
Systems [DAC’18], https://github.com/lkosmid/brook 12

https://github.com/lkosmid/brook

Brook Auto/BRAm cu

#define MAX_ITERS 10000

kernel void foo(float a<>, float b[], out c<>){
float acc=0.0;

6| for(int 1<0; 1 < a || 1 < MAX_ITERS; i++){

’ acc += b[indexof(c).x];

¢}

10 cC = a + acc;

i}

12

13 int main(void){

4] float a_h[100], b_d[100], c¢_h[100];

15 float a_d<100>, b_d<100>, c_d<100>;

16

17 streamRead (a_d, a_h):

1| streamRead (b_d, b_h);

w| foo (a_d, b_d, c_d);

0| streamWrite (c_d, ¢_h);

16

__global__ void foo(float = a, float = b, float * c){
unsigned int tid = blockldx.x*xblockDim.x + threadldx .x;
float acc=0.0;
for(int 1 < 0; 1 < a[tid]; i++)
acc += b[tid];
c[tid] = a[tid] + acc;
}
int main(void){
float a_h[100], b_d[100], c¢c_h[100];
float * a d, = b.d, = c_d;

100% sizeof (float));
100« sizeof (float));
100* sizeof (float));

cudaMalloc(&a_d ,
cudaMalloc(&b_d ,
cudaMalloc(&c_d,

cudaMemcpyHostToDevice) ;
cudaMemcpyHostToDevice) ;

100xsizeof (float),

100« sizeof (float),
b_d, c_d);

100xsizeof (float),

cudaMemcpy(a_d, a_h,
cudaMemecpy(b_d, b_h,
foo <<<1,100>>>(a_d ,

cudaMemepy(c_h, c_d, cudaMemcpyDeviceToHost) ;

13

BRASIL

= Improvement of the Brook Auto toolchain to address tool qualification

= Possible thanks to its small code base

= Assessment according to ISO 26262 [2]
= ASIL (Automotive Safety Integrity Level): High (D)
= Tool Confidence Level (TCL) 3
= Not same as DO-330 for but it relies on the same concepts:

= Extensive checks of the generated code
= Full source code traceability to facilitate manual code inspection

[1] Brook Auto: High-Level Certification-Friendly Programming for GPU- powered
Automotive Systems [DAC’18], https://github.com/lkosmid/brook

[2] BRASIL: A High-Integrity GPGPU Toolchain for Automotive Systems [ICCD’19]

14

https://github.com/lkosmid/brook

— -

Prototype Avionics plication on Brook Auto/BRASIL [:] l

= Prototype GPU application provided by Airbus Defence and Space, Madrid within the
Airbus TANIA-GPU Project ADS (E/200)

= Consists of both graphics and compute parts @ AIRBUS
= OpenGL SC 2 and Brook Auto implementations DEFENCE & SPACE
= Both provide identical outputs and exceed the screen refresh rate (60fps)

= Realistic Industrial Experimental Setup provided by CoreAVI:

= Commercial, certified OpenGL SC 2 driver cnnE
= Avionics-grade AMD E8860 GPU ¢

= HIPEAC Technology Transfer Award 2019
= Bronze Medal ACM Student Research Competition at ICCAD 2020

[1] Comparison of GPU Computing Methodologies for Safety Critical Systems: An Avionics Case Study [DATE’21]

15

Formal MethodsfeEGPT S
Ada SPARK

({
({

({
({
({

= ey 1

ware-Developmentsing] ’“‘rT_

ESA funded project

Focused on the use of Ada SPARK backend for NVIDIA
GPUs and AdaCore’s formal methods tools in order to
increase GPU software assurance

Prove code correctness
Find hidden bugs
Prove code properties Ada

o oy
.‘\\"\\"::\\';z"-”: ry

EEEE———
b—

S

-

For more details check our SWPA 2023 presentation

., ==
=<1
o

and DATE 2024 publication NVIDIA.
CUDA

16

(

(

(

= L a 1——
-‘?—-—'—-—

Leveraging Automotlv!a Standards and Components ! !

ASIL2ECSS - Reusing Automotive Certification and Qualification
Standards (https://nebula.esa.int/4000136128) ESA funded project @ esa

Analysis of Automotive (ISO 26262, AEC-Q) and European Space Standards (ECSS)

to identify the additional steps required to qualify automotive qualified hardware and
software components for use in space

For more info check our upcoming ASIL2ECSS paper and

presentation at ESA’s European Data Handling & Data
Processing Conference (EDHPC) 2025 in October

Outcomes:

(€ Automotive products have much higher quality than regular COTS

({ Reproducible production and similar tests with space but with less margins (e.g.
smaller temperature ranges or samples)

(€ Reliability features included for functional safety (lockstep, ECC, watchdogs etc)
are good for radiation performance

(€ But Automotive products are only tested with neutrons, so radiation tests need to
be repeated with space relevant radiation sources: proton, heavy ions 17

https://nebula.esa.int/4000136128

META

The METASAT Project Consortium

e 2-year Horizon Europe project: January 2023-December 2024

* TRL 3-4 “oHB

Poland
Belgium ' METASAT has received funding from
Luxembourg Czechia the European Union's Horizon
Slovakia Europe programme under grant
1 ke |'1 a. n , T LI sy [Y Moldo agreement number 101082622.
MEMBER OF BASQUE RESEARCH Rrance Switzerland Sloveniz ngs Y

& TECHNOLOGY ALLIANCE

ol geCERI N2 Serblan L 1o —% /F Collins Aerospace

fent[FS

Malta

Barcelona

Supercomputing) . .
Center © 2023 Consortium Confidential
Centro Nacional de Supercomputacion

METASAT Overview @

» Use a complex, highly capable space processor SoC

* Integrate multiple functionalities in a single platform
 Similar to the Integrated Modular Avionics concept (IMA) in avionics

* Hardware cost reduction

* Mixed Criticality support through time and space partitioning
» Software qualification cost reduction

* Use Model-Based Design to manage complexity

© 2023 Consortium Confidential

Hardware Selection @

* No hardware with high-performance and architectural complexity exists
for the space domain
* COTS Embedded Multicore and GPU devices provide these features but
depend on non-qualifiable software stacks
* GPU drivers available only for Linux
* Blocking point for use in institutional missions where high assurance is required

* Design a prototype hardware platform based on the RISC-V ISA

Multicore GPU
CPU CPU o N o
SPARROW
SIMD Unit
L2 L3 H L2
CPU CPU
cu cu

© 2023 Consortium Confidential

METASAT Use cases and final demonstrator [1] Q"

» Several independent use cases
 Different processing and acceleration requirements

* Representative of different flight software criticalities

 All use cases were integrated in a single platform
* High degree of integration was achieved

[1] Mixed-Criticality Flight Software Integration In a High Performance RISC-V Space
Platform, SMC-IT 2025

© 2023 Consortium Confidential

Project Use Cases

* 3 Project Use cases were implemented
* High degree of integration
 Distributed over 8 partitions executed together

* OHB/DLR Use Case - #UC1
* Hardware interlocking — ILSWA, ILSWB

* Protect against 2 types of wrong software
behaviour

* Implemented interlocks at software level instead of
hardware

* Reduced cost
* Instrument Control Software
* Implemented Al Based FDIR
* Housekeeping data from ENMAP

© 2023 Consortium Confidential

METAS!

Project Use Cases

* 2 BSC provided use cases based on ESA’s OBPMark-ML Open Source
Benchmarking suite

* Cloud screening

N T S T O

e " 'S 'ﬂ
{3 ‘)‘

False color Ground truth

4 Channels RGB/NIR mapped to binary mask (cloud/no cloud)

* Ship Detection

g 8 8 & 8 B
&8 8 8 8 &3 &

3 8 8 &8 8 8 8
8 8 8 8 8 8 8 o

4 &0 20 40 0t 400

e Accelerated on the SPARROW and GPU

© 2023 Consortium Confidential

+ A

The METASAT Ecosystem Overview oy

P RISC
rRONTGRA?.sE Multicore GPU
noel-v
V, oY cPU CuU cu
uXtratuM 25;?3?,3}? L 1F TensorFlow
L2 L3 H L2
1 | KHRONOS &9
- CPU CPU
CU cu
OpenMP

e Qualifiable Software Stack: accelerators can be used from bare metal or RTEMS SMP

taste Mk
., @emu ¥V
TLM 2.0 Gecelerd> W
ED-247

* Mixed-criticality: TSP support
* Added support in Model-based design tools

VERILATOR

nnnnnnnnn

 Standard-based Digital Twin framework frmi gz

© 2023 Consortium Confidential

25

e

METASAT Use Cases Architecture Ty

Satellite Instrument Computer

Satellite Instrument Environment Emulation ucH UC#2+3
(Outside the Computer on the Instrument) T 1T !

Satellite Platform &

Regular Instrument . Auxiliary On-Board A
SW for Control SW EXp;;rR”Z'I’ta' Network Science Data Ground Station
HW Protection (sce-c) module Processing SW Emulation regarding

(scc-B) (scc-p)

T™M/TC

SW SW OHB ICSW FDIR Al SW 10 Server Cloud Ship
Interlock Interlock Application removal detection
uc#2 uc#

Partiticn i iti Partition Partition Partition

RISC-V CPU/FP

RISC-V GPU

Test EGSE for
Telemetry
Display /

Replay EGSE

Sending of
Telecommands

Colours Legend:

mmmmm Satellite Housekeeping Data (as sufficient for the purpose of METASAT)
EEEE Telemetry and Telecommanding for controlling and testing the Use Case

BN |nter-partition communication for commanding and status/data request

Inter-partition communication for IP network © 2023 Consortium Confidential

26

e

I\/IETASAT Platform La boratory Setup T

VCU 118
FPGA Eval
board

Network UART level Operational

connection shifter for Computer

— RS422

© 2023 Consortium Confidential

Addressing Hardware Qualification Challenges (mET“;

Reuse:
e Multicore NOEL-V

e SPARROW Al accelerator

* Minor modifications on core, retain backwards code compatibility
* Reuse functional and timing results of existing code

* Vortex GPU
* GRETH ethernet controller
* 2 UARTS: emulation of controlled devices through 1/0

* Fully functional FPGA prototype on AMD/Xilinx VCU118
 Fully functional Digital Twin

© 2023 Consortium Confidential

Model Based Design for SW 1/2 taste

LRl SO Changed to 2 cores by software engineer

Model Based Design for RISC-V and

i#define USER_NUM_OPENMP_THREADS // Here the designer set the number of threads for his application

IVI u Itico res #if defined(RTEMS_SMP)

#include
void __attribute__((__constructor__(16008))) config_libgomp(void)

* Added TASTE support for: O S
* RISC-V/NOEL-V g
* SPARROW and OpenMP code
generation configuration for

/% OpenMP test: Print from two different cores */

RTEMS
* XtratuM inter-partition :

/% SPARROW test: Dot product of two int8x8_t arrays */

communication modehn a nd) TR e s e o
int64_t a = 0x0 01; // [1, 2, 3, 4, 6, 6, 7, 8] packed

inté4_t b = 0x08070 FDO2FF; // [-1, 2, -3, 4, -5, 6, -7, 8] packed
int32_t result = 0;

multicore partition configuration s o e

result = dot_s8(a, b); // Expected result: 36

generation e s

printf(

// include sparrow instruction support

User code

| %d %d\n",
omp_get_thread_num(), _SMP_Get_current_processor());

, result);

};

/* Required interfaces %/

. Generated code
[#ifdef __cplusplus
+
#endif

Model Based Design for SW 2/2 <mETﬂ;

Model-Based Design for Accelerators MATLAB 4
* TensorFlow Micro Support for SPARROW and Vortex GPU SIMULINK
 TensorFlow Lite code generation from MATLAB/Simulink to TensorFlow

TensorFlowMicro
* Accelerated layers in SPARROW intrinsics and Vortex

* Bare Metal, RTEMS and XRE e
 Seamless integration with the GPU Server o b [t
* No changes in the integrated partitions
* Plug and Play GPU |} Cloud
1/O Screen

Serve ing
r

© 2023 Consortium Confidential

Conclusions

({
({
({

({

High complexity in safety critical hardware and software is here to remain
There are ways to manage complexity and still obtain high assurance

No need to reinvent the wheel, we can build on existing standards and
incremental improvements

Model based solutions

30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: The METASAT Project Consortium
	Slide 19: METASAT Overview
	Slide 20: Hardware Selection
	Slide 21: METASAT Use cases and final demonstrator [1]
	Slide 22: Project Use Cases
	Slide 23: Project Use Cases
	Slide 24: The METASAT Ecosystem Overview
	Slide 25: METASAT Use Cases Architecture
	Slide 26: METASAT Platform Laboratory Setup
	Slide 27: Addressing Hardware Qualification Challenges
	Slide 28: Model Based Design for SW 1/2
	Slide 29: Model Based Design for SW 2/2
	Slide 30
	Slide 31

