
Dr. Leonidas Kosmidis

www.bsc.es

September 24, 2025

Combining High Performance Hardware and Software 

with High Software Assurance: 

Is it Possible?



Modern and upcoming space systems require increasing levels of computing 

power

Traditional space processors cannot provide this performance level

Need for higher performance hardware in space systems

Aerospace systems require high performance

2



Modern aerospace systems require new, advanced functionalities

Artificial Intelligence (AI)

High Resolution Sensors

Optical communications

Advanced Robotics…

Advanced functionalities require complex hardware and software compared to 

the existing space technologies

High Performance Hardware technologies: Advanced Multi-cores, GPUs, AI 

accelerators

Programming high performance hardware requires complex software: parallel 

and GPU programming

Increase in Complexity

3



Safety Critical systems

used in automotive, avionics and aerospace industries

correct and timely execution is important

any malfunction may be dangerous

Compliance with functional safety and quality standards e.g. ISO 26262, 

DO-178C, ECSS, NASA-STD standards

Need for High Assurance

4



At the High Performance Embedded Systems Laboratory and in the HArdware 

Dependability for Embedded Systems (HADES) group we address this issue

Build on standardised technologies and reuse

Take advantage of different standards across different industries

Modify hardware and software when possible to facilitate standard 

compliance

Model-Based Design

Formal Methods

Safe Languages

How can we ensure high assurance when complexity increases?

5



Highest Criticality software (DAL-A) needs to follow software design and coding 

standards used in the development of safety-critical systems such as MISRA-C, 

Ada SPARK, JPL Institutional Coding Standard and others:

Restricted use of Pointers

No dynamic memory allocation

Static verification of program properties

Resilience to faults

Fault isolation

Challenge: DO-178 C Certification for GPU code

6



Highest Criticality software (DAL-A) needs to follow software design and coding 

standards used in the development of safety-critical systems such as MISRA-C, 

Ada SPARK, JPL Institutional Coding Standard and others:

Restricted use of Pointers

No dynamic memory allocation

Static verification of program properties

Resilience to faults

Fault isolation

Challenge: DO-178 C Certification for GPU code

7



Modern aircraft use LCD screens which have

replaced analog instruments

A320:  4 displays

A350:  6 very large displays

A380: 10 large displays

Newer aircraft feature touch screens

Driven by avionics-grade GPUs

Rely on DO-178 B/C certified graphics software 

stacks

Glass Cockpit

8



Modern aircraft use LCD screens which have

replaced analog instruments

A320:  4 displays

A350:  6 very large displays

A380: 10 large displays

Newer aircraft feature touch screens

Driven by avionics-grade GPUs

Rely on DO-178 B/C certified graphics software 

stacks

Glass Cockpit

9



Modern aircraft use LCD screens which have

replaced analog instruments

A320:  4 displays

A350:  6 very large displays

A380: 10 large displays

Newer aircraft feature touch screens

Driven by avionics-grade GPUs

Rely on DO-178 B/C certified graphics software 

stacks

Glass Cockpit

10



DO-178C Certification-ready Graphics-based GPGPU 

Methods

11

General Idea:

▪ Leverage certified graphics-based solutions for the 

    acceleration of general purpose computing

▪ Use them directly or

▪ Build higher level abstractions on top of them

Existing Methods:

▪ OpenGL SC 1.0.1

▪ OpenGL SC 2.0

Upcoming Methods:

▪ Vulkan SC

▪ Brook Auto/BRASIL



Brook Auto/BRASIL

12

▪ Addresses certification at language level

▪ Model-based design / correct-by-construction for error prone GPU operations
▪ Same approach followed nowadays by SYCL

▪ Open-source GPU programming language for safety critical systems [2]

▪ Subset of the Brook programming language [1], similar to CUDA

▪ Restricted subset of C (no recursion, no goto, no pointers, enforcement of loop 
bounds)

▪ Source-to-source compilation to safety critical graphics APIs

▪ Multiple backends (CPU, multicore, vectorisation, embedded graphics)

▪ Supports almost any parallel platform considered for safety critical systems

[1] I. Buck et al, Brook for GPUs, SIGGRAPH 2004

[2] Brook Auto: High-Level Certification-Friendly Programming for GPU-powered Automotive 
Systems [DAC’18], https://github.com/lkosmid/brook  

https://github.com/lkosmid/brook


Brook Auto/BRASIL vs CUDA Example

13



Brook Auto/BRASIL

14

BRASIL

▪ Improvement of the Brook Auto toolchain to address tool qualification

▪ Possible thanks to its small code base

▪ Assessment according to ISO 26262 [2]

▪ ASIL (Automotive Safety Integrity Level): High (D)

▪ Tool Confidence Level (TCL) 3

▪ Not same as DO-330 for but it relies on the same concepts:

▪ Extensive checks of the generated code

▪ Full source code traceability to facilitate manual code inspection

[1] Brook Auto: High-Level Certification-Friendly Programming for GPU- powered 
Automotive Systems [DAC’18], https://github.com/lkosmid/brook 

[2] BRASIL: A High-Integrity GPGPU Toolchain for Automotive Systems [ICCD’19]

https://github.com/lkosmid/brook


Prototype Avionics Application on Brook Auto/BRASIL [1]

15

▪ Prototype GPU application provided by Airbus Defence and Space, Madrid within the 
Airbus TANIA-GPU Project ADS (E/200)

▪ Consists of both graphics and compute parts

▪ OpenGL SC 2 and Brook Auto implementations

▪ Both provide identical outputs and exceed the screen refresh rate (60fps)

▪ Realistic Industrial Experimental Setup provided by CoreAVI:

▪ Commercial, certified OpenGL SC 2 driver

▪ Avionics-grade AMD E8860 GPU

▪ HIPEAC Technology Transfer Award 2019

▪ Bronze Medal ACM Student Research Competition at ICCAD 2020

[1] Comparison of GPU Computing Methodologies for Safety Critical Systems: An Avionics Case Study [DATE’21]



Formal Methods for GPU Software Development Using 

Ada SPARK

16

ESA funded project

Focused on the use of Ada SPARK backend for NVIDIA 

GPUs and AdaCore’s formal methods tools in order to 

increase GPU software assurance

Prove code correctness

Find hidden bugs

Prove code properties

For more details check our SWPA 2023 presentation 
and DATE 2024 publication



ASIL2ECSS - Reusing Automotive Certification and Qualification 

     Standards (https://nebula.esa.int/4000136128) ESA funded project

Analysis of Automotive (ISO 26262, AEC-Q) and European Space Standards (ECSS) 

to identify the additional steps required to qualify automotive qualified hardware and 

software components for use in space

Outcomes: 

Automotive products have much higher quality than regular COTS

Reproducible production and similar tests with space but with less margins (e.g. 

smaller temperature ranges or samples)

Reliability features included for functional safety (lockstep, ECC, watchdogs etc) 

are good for radiation performance

But Automotive products are only tested with neutrons, so radiation tests need to 

be repeated with space relevant radiation sources: proton, heavy ions

Leveraging Automotive Standards and Components

17

For more info check our upcoming ASIL2ECSS paper and 
presentation at ESA’s European Data Handling & Data 

Processing Conference (EDHPC) 2025 in October

https://nebula.esa.int/4000136128


18 © 2023 Consortium Confidential

The METASAT Project Consortium

• 2-year Horizon Europe project: January 2023-December 2024

• TRL 3-4

METASAT has received funding from 
the European Union's Horizon 
Europe programme under grant 
agreement number 101082622.



19 © 2023 Consortium Confidential

METASAT Overview
• Use a complex, highly capable space processor SoC

• Integrate multiple functionalities in a single platform
• Similar to the Integrated Modular Avionics concept (ΙΜΑ) in avionics

• Hardware cost reduction

• Mixed Criticality support through time and space partitioning
• Software qualification cost reduction

• Use Model-Based Design to manage complexity



20 © 2023 Consortium Confidential

Hardware Selection
• No hardware with high-performance and architectural complexity exists 

for the space domain

• COTS Embedded Multicore and GPU devices provide these features but 
depend on non-qualifiable software stacks

• GPU drivers available only for Linux

• Blocking point for use in institutional missions where high assurance is required

• Design a prototype hardware platform based on the RISC-V ISA



21 © 2023 Consortium Confidential

METASAT Use cases and final demonstrator [1]

• Several independent use cases
• Different processing and acceleration requirements

• Representative of different flight software criticalities

• All use cases were integrated in a single platform
• High degree of integration was achieved

[1] Mixed-Criticality Flight Software Integration In a High Performance RISC-V Space 
Platform, SMC-IT 2025



22 © 2023 Consortium Confidential

Project Use Cases
• 3 Project Use cases were implemented

• High degree of integration
• Distributed over 8 partitions executed together

• OHB/DLR Use Case - #UC1
• Hardware interlocking – ILSWA, ILSWB

• Protect against 2 types of wrong software 
behaviour

• Implemented interlocks at software level instead of 
hardware

• Reduced cost
• Instrument Control Software
• Implemented AI Based FDIR
• Housekeeping data from ENMAP



23 © 2023 Consortium Confidential

Project Use Cases
• 2 BSC provided use cases based on ESA’s OBPMark-ML Open Source 

Benchmarking suite

• Cloud screening

• Ship Detection

• Accelerated on the SPARROW and GPU



24 © 2023 Consortium Confidential

The METASAT Ecosystem Overview

• Qualifiable Software Stack: accelerators can be used from bare metal or RTEMS SMP

• Mixed-criticality: TSP support

• Added support in Model-based design tools

• Standard-based Digital Twin framework

XtratuM



25 © 2023 Consortium Confidential

METASAT Use Cases Architecture

Hypervisor (XNG)

Partition

SW 
Interlock 
Type B

Partition

SW 
Interlock 
Type A

Partition

OHB ICSW 
Application 

SW

Partition

FDIR AI SW

Partition

IO Server

Partition

Cloud 
removal
UC #2

Partition

Ship 
detection

UC #3

RISC-V CPU/FPU

RISC-V GPU

Real EnMAP 
Instrument 

Housekeeping Data 
from Orbit 
(Recorded)

Real EnMAP 
Instrument 

Housekeeping Data 
from Previous Tests 

on Ground 
(Recorded)

Test EGSE for 
Telemetry 
Display / 

Sending of 
Telecommands

Satellite Instrument Computer

Satellite Platform & 
Ground Station 

Emulation regarding 
TM/TC

Satellite Instrument Environment Emulation
(Outside the Computer on the Instrument)

Simulated EnMAP-
like Instrument 

Housekeeping Data 
for Extending Real 

Data

HK Data 
Replay EGSE

Colours Legend:

Satellite Housekeeping Data (as sufficient for the purpose of METASAT)

Telemetry and Telecommanding for controlling and testing the Use Case

Inter-partition communication for commanding and status/data request

Inter-partition communication for IP network

Partition

GPU IO 
Server

SW for
HW Protection

(SCC-B)

Regular Instrument 
Control SW

(SCC-C)

Experimental 

FDIR AI 

Auxiliary 
Network 
module

On-Board
Science Data

Processing SW
(SCC-D)

UC #1 UC #2+3



26 © 2023 Consortium Confidential

METASAT Platform Laboratory Setup
Power 
Supply

UART breakout 
board

VCU  118 
FPGA Eval 

board

Network 
connection

UART level 
shifter for 

RS422

Operational 
Computer



27 © 2023 Consortium Confidential

Addressing Hardware Qualification Challenges

Reuse:

• Multicore NOEL-V

• SPARROW AI accelerator
• Minor modifications on core, retain backwards code compatibility 
• Reuse functional and timing results of existing code

• Vortex GPU

• GRETH ethernet controller

• 2 UARTS: emulation of controlled devices through I/O

• Fully functional FPGA prototype on AMD/Xilinx VCU118

• Fully functional Digital Twin



28 © 2023 Consortium Confidential

Model Based Design for SW 1/2
Model Based Design for RISC-V and 
Multicores 

• Added TASTE support for:

• RISC-V/NOEL-V

• SPARROW and OpenMP code 
generation configuration for 
RTEMS

• XtratuM inter-partition 
communication modeling and 
multicore partition configuration 
generation



29 © 2023 Consortium Confidential

Model Based Design for SW 2/2
Model-Based Design for Accelerators

• TensorFlow Micro Support for SPARROW and Vortex GPU

• TensorFlow Lite code generation from MATLAB/Simulink to 
TensorFlowMicro

• Accelerated layers in SPARROW intrinsics and Vortex

• Bare Metal, RTEMS and XRE

• Seamless integration with the GPU Server
• No changes in the integrated partitions

• Plug and Play GPU 
I/O

Serve
r

FDIR

Cloud
Screen

ing

Ship
detecti

on



High complexity in safety critical hardware and software is here to remain

There are ways to manage complexity and still obtain high assurance

No need to reinvent the wheel, we can build on existing standards and 

incremental improvements

Model based solutions

Conclusions

30



31

Thank you!

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: The METASAT Project Consortium
	Slide 19: METASAT Overview
	Slide 20: Hardware Selection
	Slide 21: METASAT Use cases and final demonstrator [1]
	Slide 22: Project Use Cases
	Slide 23: Project Use Cases
	Slide 24: The METASAT Ecosystem Overview
	Slide 25: METASAT Use Cases Architecture
	Slide 26: METASAT Platform Laboratory Setup
	Slide 27: Addressing Hardware Qualification Challenges
	Slide 28: Model Based Design for SW 1/2
	Slide 29: Model Based Design for SW 2/2
	Slide 30
	Slide 31

