

Simulating Planned LICIACube Imagery of DART Impact Ejecta based on Ejecta Dynamics Simulation Output

> Eugene G. Fahnestock, Emily Kramer, and Steve Chesley

Eugene.G.Fahnestock@jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

This document has been reviewed and determined not to contain export controlled technical data.

Introduction

- DART to impact surface of Dimorphos, secondary of binary NEA 65803 Didymos
 - at 6.12 6.77 km/s ← depends on launch date, per trajectory release D210308-SOC
 - on Sept. 25 Oct. 1, 2022 ← ditto
 - in "retrograde" sense = nearly opposite Dimorphos' orbital velocity
- Expected to liberate large quantity of ejecta!
- LICIACube will take images with its 2 cameras during fast flyby, to reveal shorttimescale ejecta plume evolution, etc.
- Here we attempt to simulate how ejecta presents in these planned images

Note: For what follows we started with older launch date assumption and trajectory, for which:

 V_{rel} = 7.205 km/s (adjusted) impact epoch = 02-OCT-2022 21:24:40 TDB DART mass at impact, *m* = 607.9 kg

Binary Dynamics Simulation

F2BP propagation of underlying motion of binary components

- Setup consistent with DRA at the time (v2.26)
- Propagated using GUBAS* pre- & post-impact (* Davis & Scheeres, 2020; https://github.com/alex-b-davis/gubas)
- Impulsive state change at impact epoch consistent with β =2 and impact geometry: -0.2 Impact point offset 22.5 m from thru COF, toward "local west" $\beta m_i \vec{v}_i + m_B \vec{v}_{B_a}$ -0.25 \vec{v} B_o

$$\begin{split} B &= \frac{1}{m_i + m_B} \qquad \vec{\omega}_B = \left[A_B \left(I_B + \Delta I_B \right) A_B^I \right] \quad \left(\beta \ m_i \ \left(\vec{\rho}_i \times \vec{v}_i \right) + A_B \ I_B \ A_B^I \vec{\omega}_{B_o} \right) \\ \vec{v}_B &\approx \frac{\beta \ m_i}{m_B} \ \vec{v}_i + \ \vec{v}_{B_o} \qquad \vec{\omega}_B \approx \left[A_B \ I_B \ A_B^T \right]^{-1} \left(\beta \ m_i \ \left(\vec{\rho}_i \times \vec{v}_i \right) \right) + \vec{\omega}_{B_o} \end{split}$$

DRA Dimorphos shape model body frame axes: +X,-X,+Y,-Y,+Z

surface normal at impact pt.

-0.6

to Didymos

 \vec{v}_{B}

(DUS) -0.3

Ejecta Initialization

Using Crater Scaling Equations (CSEs)

K.R. Housen, K.A. Holsapple / Icarus 211 (2011) 856-875

Crater volume, V V V V V V Target TargetTarget

• For what follows, we use nominal mass case:

```
Dimorphos surface bulk density, \rho = 2111 \text{ kg/m}^3
assumed surface cohesive strength, Y = 100 \text{ Pa}
assumed surface porosity = 35%
Dimorphos centroid to impact point vector in inertial frame (ICRF) = [-63.68 17.39 38.41] m
surface acceleration, g (net of gravity & centripetal) = 5.927E-05 m/s^2
DART equivalent radius, a = 0.5 \text{ m}
DART mass, m = 607.9 \text{ kg}
DART bulk density, \delta = 1161 \text{ kg/m}^3
V_{rel} = U = 7.205 \text{ km/s}
```


This document has been reviewed and determined not to contain export controlled technical data.

Ejecta Dynamics Propagation & cSFD

- Initial states translated to barycentric inertial frame
- RF3BP: collision-less, no inter-particle interaction
- Active force models:
 - Gravity of binary components, polyhedral, turned off >1000 km from barycenter
 - SRP (cannonball, inc. body shadowing)
 - Differential solar gravity ("solar tides")
- Ejecta flagged as "escaped" once crossing plane 200 km anti-sunward (+R in RTN frame) with E_{2BP} > 0
- Ejecta size range: 0.05–100 mm, 50 μ m 0.1 m
- Cumulative Size Frequency Distribution (cSFD) power-law slopes:
 - "shallow" = -2.0
 - nominal = -2.3017 ← Itokawa heritage
 - "steep" = -2.99

- For what follows, we use nominal slope
- N ≥1e6 particles propagated to 90 days duration, or to sooner return impact, transfer impact, or escape
- Full population scaled from propagated population using particle multipliers

LICIACube Observation Plan

0

4000

2000

Y (km)

-2000

Fly-by geometry & pointing

LICIACube trajectory w.r.t. Didymos barycenter (blue) (ICRF frame)

- PL2's long pixel dimension aligned to red (\hat{y}_{LBF}) unit vector
- Boresight (blue, \hat{z}_{LBF}) assumed maintained pointed from current LICIACube position to centroid of target (Dimorphos)

2000

0

X (km)

-2000

-4000

LICIACube Observation Plan

Camera specs. & image capture times

Property	PL1 = LEIA	PL2 = LUKE
focal length	393 mm	70 mm
f-number	5.2	5
diag. FOV	±2.05°	±5°
iFOV	25 μ rad	75 μ rad
pixel dims	2048 x 2048	2054 x 1090
color filters	Panchrom. (400 – 900 nm)	RGB
pixel bit depth	12 bit	8, 10 bit
integration time range	0.1 ms – seconds	
integration time granularity	0.1 ms	
chosen integration times	0.3, 0.6, 0.9 ms	0.3, 0.6, 0.9 ms
Frame rate	up to 7 fps	up to 5 fps
Image size	~6.3 MB/image	~2.8 MB/image (10 bit)

For impact epoch 02-OCT-2022 21:24:40.0000 TDB			
PL1:			
epoch	w.r.t. impact (s)	w.r.t. C.A. (s)	
02-0CT-2022 21:23:54.4100 TDE	-45.5900	-211.0000	
02-OCT-2022 21:24:03.4100 TDE	-36.5900	-202.0000	
02-0CT-2022 21:24:12.4100 TDE	-27.5900	-193.0000	
02-0CT-2022 21:24:21.4100 TDE	-18.5900	-184.0000	
02-0CT-2022 21:24:30.4100 TDB	-9.5900	-1/5.0000	
02-0CT-2022 21:24:39:4100 TDE	9 4100	-157 0000	
02-0CT-2022 21:24:57.4100 TDE	17.4100	-148.0000	
02-0CT-2022 21:25:05.4100 TD	25.4100	-140.0000	
02-0CT-2022 21:25:11.4100 TDE	31.4100	-134.0000	
02-0CT-2022 21:25:17.4100 TDE	37.4100	-128.0000	
02-0CT-2022 21:25:23.4100 TDE	43.4100	-122.0000	
02-0CT-2022 21:25:29.4100 TDE	49.4100	-116.0000	
02-0CT-2022 21:25:35.4100 TDE	55.4100	-110.0000	
02-0CT-2022 21:25:41.4100 TDE	61.4100	-104.0000	
02-0CT-2022 21:25:47.4100 TDB	67.4100	-98.0000	
02-0CT-2022 21:25:53.4100 TDE	73.4100	-92.0000	
02-0CT-2022 21:25:59.4100 TDE	/9.4100	-85.0000	
02-0CT-2022 21:26:05.4100 TDB	85.4100	-80.0000	
02-0CT-2022 21:20:11.4100 TDE	91.4100	-74.0000	
02-0CT-2022 21:20:17:4100 TDE	103,4100	-62.0000	
02-0CT-2022 21:26:29.4100 TDE	109.4100	-56.0000	
02-0CT-2022 21:26:35.4100 TD	115.4100	-50.0000	
02-0CT-2022 21:26:41.4100 TDE	121.4100	-44.0000	
02-0CT-2022 21:26:47.4100 TDB	127.4100	-38.0000	
02-0CT-2022 21:26:53.4100 TDB	133.4100	-32.0000	
02-0CT-2022 21:26:56.4100 TDE	136.4100	-29.0000	
02-0CT-2022 21:27:02.9100 TDE	142.9100	-22.5000	
02-0CT-2022 21:27:09.4100 TDE	149.4100	-16.0000	
02-0CT-2022 21:27:15.9100 TDE	155.9100	-9.5000	
02-0CT-2022 21:27:23.4100 TDE	163.4100	-2.0000	
02-0CT 2022 21:27:24.1600 TDB	164.1600	-1.2500	
02-0CT-2022 21:27:24.9100 TDE	165 6600	0.2500	
02-0CT-2022 21:27:26.1100 TDE	166.1100	0.7000	
02-0CT-2022 21:27:27.7300 TDB	167.7300	2.3200	
02-0CT-2022 21:27:29.3500 TDB	169.3500	3.9400	
02-0CT-2022 21:27:30.9700 TDB	170.9700	5.5600	
02-0CT-2022 21:27:32.5900 TDE	172.5900	7.1800	
02-0CT-2022 21:27:34.2100 TDE	174.2100	8.8000	
02-0CT-2022 21:28:25.4100 TDE	225.4100	60.0000	
02-0CT-2022 21:29:25.4100 TDE	285.4100	120.0000	
02-OCT-2022 21:30:25.4100 TDE	345.4100	180.0000	
02-0CT-2022 21:31:25.4100 TDE	405.4100	240.0000	
02-0CT-2022 21:32:25.4100 TDE	405.4100	300.0000	
02-0CT-2022 21:33:25.4100 TDB	525.4100	300.0000	
02-0CT-2022 21:34:25.4100 TDD	645 4100	420.0000	
02-0CT-2022 21:35:25:4100 TDE	705.4100	540.0000	
02-0CT-2022 21:37:25.4100 TDB	765.4100	600.0000	
PL2:			
epoch	w.r.t. impact (s)	w.r.t. C.A. (s)	
02-0CT-2022 21:25:05.4100 TDE	25.4100	-140.0000	
02-0CT-2022 21:25:11.4100 TDE	31.4100	-134.0000	
02-0CT-2022 21:25:17.4100 TDE	37.4100	-128.0000	
02-0CT-2022 21:25:23.4100 TDE	43.4100	-122.0000	
02-0CT-2022 21:25:29.4100 TDE	49.4100	-116.0000	
02-0CT-2022 21:25:35.4100 TDE	55.4100	-110.0000	
02-UCT-2022 21:25:41.4100 TDE	51.4100	-104.0000	
02-0CT-2022 21:25:47.4100 TDB		-92.0000	

Interface to Image Simulation

3D spatial number density in gridded interface data files ("cube files")

- One such file at each unique image capture time
- Define grid of base cubes with origin s.t. all ejecta lies in first octant
- For each unique [particle size bin + non-empty base cube index]:
 - Enter recursive subdivision algorithm that tests subcubes formed by bisection along each cardinal axis
 - Don't do another level of subdivision if that would result in # of actually simulated particles in nonempty sub-cubes < n
 - # of actually simulated particles in non-empty subcubes scaled to full pop. using particle multipliers,

4/16/21 divided by volume

This document has been reviewed and determined not to contain export controlled technical data.

8 jpl.nasa.gov

Mapping Cubes onto Pixels

Replace cube with equivalent volume sphere when figuring which pixels it falls on.

Photometric Model

Converting # of particles per pixel, for each size bin, to brightness:

- Recall our particle size range is 0.05 100 mm
- Follow Hergenrother's model from Bennu particles (1 50 mm)
- $V = H + S \phi + 5 \log 10 (R\Delta)$
 - H: absolute mag
 - S: phase slope = 0.013 mag/deg (Hergenrother, 2020)
 - φ: phase angle
 - R: Heliocentric distance (in au)
 - Δ : Observer distance (in au)

Simulated LEIA (PL1) Images

Default >100 base cubes per axis (fine) # of levels of subdivision limited to 10

Default >10 base cubes per axis (coarse) # of levels of subdivision limited to 13

This document has been reviewed and determined not to contain export controlled technical data.

Backup Slides

Results of Subdivision

This document has been reviewed and determined not to contain export controlled technical data.

13 jpl.nasa.gov

of levels of subdivision limited to 10

Simulated LEIA (PL1) Image

Default >100 base cubes per axis (fine)

Results of Subdivision

Default >10 base cubes per axis (coarse) No. propagated = 1 All cubes 10⁵ 6000 4000 2000 10 12 10⁴ 8 14 0 No. propagated = 2 7000 6000 5000 10³ 4000 3000 2000 1000 10² 10 12 14 0 2 8 No. propagated = 3 ×10⁴ 3.5 r 2.5 10¹ 1.5 0.5 10^{0} 2 4 10 12 14 0 20 40 60 80 100 Cube level No. propagated in cube

of levels of subdivision limited to 13

This document has been reviewed and determined not to contain export controlled technical data.

15 jpl.nasa.gov

Simulated LEIA (PL1) Image

Default >10 base cubes per axis (coarse)

This document has been reviewed and determined not to contain export controlled technical data.

jpl.nasa.gov

© 2021 California Institute of Technology. Government sponsorship acknowledged.