Correlative Study On Microstructure And Mechanical Behavior Of Chondrite Meteorite

Tai-Jan Huang⁽¹⁾, Sridhar Niverty⁽¹⁾, Arun Sundar⁽²⁾, Md Fazle Rabbi⁽³⁾, Laurence A.J. Garvie⁽⁴⁾, Aditi Chattopadhyay⁽³⁾, Desireé Cotto-Figueroa⁽⁵⁾, Nikhilesh Chawla⁽¹⁾

⁽¹⁾ School of Materials Engineering, Purdue University, West Lafayette, IN 47907
⁽²⁾ Center for 4D Materials Science, Arizona State University, Tempe, AZ 85281
⁽³⁾ Adaptive Intelligent Materials & Systems Center, Arizona State University, Tempe, AZ 85281
⁽⁴⁾ Center for Meteorite Studies, Arizona State University, Tempe, AZ 85281
⁽⁵⁾ Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao, P.R.

Motivation and Objectives

Motivation

- Meteorite provides opportunity to infer properties of parent body
- A through understanding of meteorite **structure-property relation** is required for:
 - Formation / fragmentation study
 - Impact risk mitigation
 - Simulation model
- Research Objectives
 - Establish comprehensive understanding of Aba Panu (L3)
 - Investigate relations through correlative characterization techniques
 - Structural Characterization
 - Mechanical Behavior

Structural Characterization

- Correlate non-destructive 3D XRT analysis with detailed 2D examination
 - XRT volume scan to non-destructively obtain 3D structural information

X-ray Tomography

1000 μm

Structural Characterization

- Correlate non-destructive 3D XRT analysis with detailed 2D examination
 - Electron spectroscopy reveals local structural details and phase composition

SEM and EDS 2D analysis for microstructure and phase identification

1000 µm

Correlative result of **3D** phase special distribution

Mechanical Behavior

- Mechanical Behavior of Individual Meteorite Phases
 - Precise micro modulus and hardness via Continuous Stiffness Measurement (CSM) technique using nanoindentation
 - Combined mechanical response of lamellar matrix using Vickers hardness test

Basic Components of Instrumented Indentation Tester and load calculation

Individual phase modulus/hardness measurement

Summary and Future work

Summary

Structural Characterization

- 3D Phase distribution via non-destructive X-ray tomography
- 2D composition analysis + detail structure observation
- Mechanical Behavior
 - Micro modulus/hardness of individual phase via Nanoindentation
 - Combined response of matrix via Vickers Hardness test

	Metallic Phases			Mineral Solid solutions		Matrix
	Kamacite	Troilite	Chromite	Olivine	Pyroxene	Matrix
Modulus (GPa)	211.3	108.0	153.1	202.7	157.9	х
Hardness (GPa)	3.3	3.9	16.7	16.4	12.7	651.1 MPa

Future work

- Scale dependent structure-properties relations investigation
- Expand research scope to multiple meteorite types
- Provide solid results for simulation model construction

Thank you for listening!

This material is based upon work supported by the National Aeronautics and Space Administration under Grant/Contract/Agreement No. <80NSSC18K1444> issued through the SSO Near Earth Object Observations Program.