www.bsc.es

Reliable Machine Learning Acceleration for
Future Space Processors and FPGAS:
LEON, NOEL-V and TASTE

Marc Solé Bonet, Jannis Wolf, Leonidas Kosmidis

N — —

Barcelon — —— —
Sup erco mput ng " == FRIEDRICH-ALEXANDER

—

—

Center = UNIVERSITAT _
= == ERLANGEN-NURNBERG

UNIVERSITAT POLITECNICA
DE CATALUNYA

le Supercomputacion

OBDP 2021

[t B "o

Introduction anmtion

(

(
(

(

Increasing interest in artificial intelligence (Al) and machine learning (ML) in space
missions: e.g. Mars Perseverance, ®-Sat-1, OPS-SAT...

Existing space processors cannot keep up with their computational needs
Use of COTS devices in institutional missions is challenging:
(€ no radiation hardening - cannot be (safely) used beyond LEO
(€ Non-space qualified software stacks, lack of RTOS support
We present two open source hardware designs to increase Al processing capabilities
In space:
({ Low-cost short vector unit to increase Al performance in space CPUs
({ Low-cost Binarized Neural Network (B) accelerator based on TASTE

'’ -

=

Low-Cost Short'm Support for Space Processors —r

e ———

(€ Hardware module designed for Gaisler’'s LEON3 and NOEL-V processors

(€ Low-cost hardware unit to speed-up Al applications
({ Special instructions selected by analyzing the most common ML operations
(C 8-bit integer instructions are enough for ML [1]

(€ SIMD architecture such as ARM’s NEON
(€ But reduced hardware overhead by reusing the integer register file

(SWAR (SIMD within a register) concept inspired by [2] but combining ideas
from mobile GPUs [3] too

(€ Saturation option included for all instructions

[1] T. P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA, 2017

[2] Martin Danek. ESA IP Core Extensions for LEONZ2: daiFPU and SWAR. ESA TEC-ED &TEC-
SW Final Presentation Days, May 2020.

[3] Trompouki, Towards General Purpose Computations on Low-end Mobile GPUs. DATE 2016. 3

SIMD: ArchitectUredéign

(

(

(

-—'

Reusing the integer register file simplifies
loading and managing the data in the
registers

Frequently found instructions in ML
algorithms added: arithmetic, bitwise, min,
max etc.

Two pipeline stages:
(€ Vector-Vector operations
({ Reduction operations
({ Bypasses when one is not used

|A3HB3”A2"BZ”A1“B1”A0"BO|

I

X SWIZZLING|NETWORK

I I
/7 [E
EQQOI; R
—_
===

-—'

SIMD: ArchitectUrepe_ign

10 rd 001001 rsl i sd2 sdl rs2
31 29 24 18 13 12 9 4 0

(€ Instructions encode the source and destination register and the operation
code for each stage

(€ Exploited unused opcodes in LEON3
(€ Custom extensions for NOEL-V
(€ Additional embedded GPU inspired features are included:
(€ Immediate instructions encode commonly used values (e.g. powers of 2)
(€ Masking and Swizzling
(€ Both configured using the special register %scr (SIMD control register)5

P

L, Pfogrammmg”‘

(€ Assembler support has been included for the new SIMD instructions
({ The tests have been written in C using inline assembly
(€ Currently working on compiler support

unsigned char weights[32%32];
2| unsigned char next_layer[32x32];

1| /= Allocate short vectors to specific registers =/
s| register unsigned int a asm(“"%g4”);

6| register unsigned int b asm("%g5");

register unsigned int result asm("%g6”) ;

9| /+ initialise all a components to 0, ie a.xyzw=0 =/
wla = 0;

1| /= b.xyzw = weights [0].xyzw =/

12/ b = *((unsigned intx) &weights[0]);

12| /% result.xyzw = a.xyzw + b.xyzw =/

14 asm(" add_ %gd, %g5, %gb”);

15| /#+ next_-layer [0].xyzw = result.xyzw =/

16| *((unsigned intx) &next_layer[0])=result;

We have implemented our design using Xilinx Vivado targeting Artix 7
({ Baseline LEON3-MIN@100MHz

Resource SIMD Cost % of increase w.r.t.
Absolute Value baseline LEON3-MIN

LUTs 1869 25%

FF 168 5.9%

(C Only a fraction of the hardware cost of conventional vector implementations for
embedded processors (25% vs 2X) [1]

(€ The integration of the SIMD reduced the core frequency to 72MHz
(€ Currently working on design optimisation to achieve the original frequency

[1] M. Johns et al. A Minimal RISC-V Vector Processor for Embedded Systems. FDL 2020 ~

(€ Matrix multiplication speed-up compared to LEON3-MIN@100MHz
(€ Essential building block in NN for fully connected and convolution layers

BB]
2.45x 3.81x 3.08x 3.39x
Char 2.24x 3.59x 2.96x 3.31x

(€ Complex inference application Cifar-10 from [1][2] speed-up:

Cifar-10 4.13x

(€ Performance improvements despite frequency reduction

[1] GPU4S Bench: Design and Implementation of an Open GPU Benchmarking Suite for Space On-board

Processing. https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html

[2] GPU4S (GPUs for Space): Are we there yet? & OBPMark (On-Board Processing Benchmarks) — Open
Source Computational Performance Benchmarks for Space Applications, OBDP 2021

https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html

"k——

FPGA Binary Neural _etwork (BNN)-Accelerator

ey f OO 0—0][y E
- E 0—o0 0—0 | :
1. CPU loads 2. ESA’s Model-Based 3. Custom-designed 4. CPU receives
feature vector TASTE framework BNN Accelerator on prediction result
handles the the FPGA performs
communication to inference step
accelerator

= ‘:'.v‘.:w_- -

Project Properti’ésﬁ I

(€ Operation principle
(€ Inference off-loading to the FPGA BNN accelerator

(€ Reconfigurable design through the FPGA
(€ Flexible adaption to neural network parameters
(€ Scalable parallelism

({ Reliable and Open Source from the ground up:

(€ TASTE correct-by-construction communication: software driver
and hardware communication mechanism generation

(€ Hand-written VHDL open source code for the accelerator

10

Binarized Neural Ne~t‘ orks

P

Binarization

(€ MAC operation is
Real-valued Slmpllfled to XNOR
NGO L o and set bit count
operation

(€ Reduces memory
usage up to 1/32

A (€ Only marginal
performance loss

shown in scientific

literature

{310 to 64 bits

o sign([_])

| sign(l)

[] sign([d)

W =0 sign((]) =
W xNoR mgn{.) -
[Bit Count ﬂlgl]{[:D .
| sign([l)
| (mm] sign([])
(] sign(CJ)

Binary

Networks

OOmOmOC im0
g
!

Source: https://www.codeproject.com/Articles/1185278/Accelerating-Neural-Networks-with-Binary-Arithmetic 1

—

= S ——

FPGA Binary Neural etwork Accelerator - !

P

Basic principle: Fully connected layer cells attached through buffers

Input Buffer

Fully connected cell

Feature Map from
previous layer

Output Buffer

\ 4

BlockRAM memory XNOR Gate
holding the weights

———

Accumulator

A 4 \ 4
+

|

1

|

|

|

- [
> sign
|

|

1

|

|

|

Convolutional layer possible through parallel fully connected layers and reconnecting

of the feature maps
12

__-—‘_]—":;'

Why is this very Tast. ast?f '

(€ Parallelization inside layer

(€ Parallel bitwise execution only limited by loading weights from
BRAM

(€ Pipelining over layers

({ Instead of sequential calculation on the CPU, the first layer can start
with the next feature vector after completing the previous one

(€ Low memory usage
({ Effective load and store of weights

13

Clock cycles needed for one MNIST pass through fully connected
layer with size (512, 512) on a LEON3 and on the accelerator

6,000,000
5,000,000
4,000,000
3,000,000
2,000,000

1,000,000

LEON3

65,536

FPGA Accelerator

Speed Up of about 74x. But:

(€ FPGA operates at different
frequency

(€ Communication overhead
IS not considered

(€ LEONS simulation only
with TSIM

- Speed up expected to
be smaller in reality

14

Future Work

(€ From simulation to hardware
(€ LEONS3 and BNN accelerator not connected yet
(€ Simulation and verification was only performed separately

(€ Python Code generator integrated with the TASTE framework
(€ Integrating binarized layer training into a big DL library like PyTorch
({ After training, get parameters and layer configurations

(€ Optimize parallelization scheme and generate VHDL code for the
accelerator in a complete model-based manner

15

=¥ —

Conclusions and Futt]e Work

(€ Two work-in-progress open source hardware designs for reliable machine
learning acceleration of space on-board systems:

(€ Alow-cost Al vector unit for LEON3 and NOEL-V, achieving speedups in matrix
multiplication of up to 3.8x and 4.13x in a complex inference chain

(€ Improve CPU frequency to match baseline design
(€ Full compiler support

(€ An FPGA BNN neural network accelerator achieving theoretical speedups of
74x compared to a baseline LEON3 processor

(€ Move from simulation to FPGA
({ Automatic code generation integrated with TASTE and PyTorch
(C Both provide promising preliminary results

(€ Evaluation with space-relevant ML benchmarks: OBPMark and MLAB presented
at OBDP 2021

16

e —
References and Ackngwledgements

({ Both projects participate in the Xilinx Open Hardware Design Competition 2021
(Europe):
(€ Vector Unit: https://gitlab.bsc.es/msolebon/grlib-ai-extension
(€ BNN Accelerator: www.github.com/JannisWolf/fpga bnn_accelerator

(€ This work is partially supported by:
(€ the Xilinx University Program (XUP) and XUP Board Partner Red Pitaya
(ESA under the GPU4S (GPU for Space) project (ITT AO/1-9010/17/NL/AF)

(€ European Commission's Horizon 2020 programme under the UP2DATE
project (grant agreement 871465)

(€ the Spanish Ministry of Economy and Competitiveness (MINECQO) under
grants PID2019-107255GB and FJCI-2017-34095

(€ the HIPEAC Network of Excellence 17

https://gitlab.bsc.es/msolebon/grlib-ai-extension
http://www.github.com/JannisWolf/fpga_bnn_accelerator

www.bsc.es

Reliable Machine Learning Acceleration for
Future Space Processors and FPGAS:
LEON, NOEL-V and TASTE

Marc Solé Bonet, Jannis Wolf, Leonidas Kosmidis

N — —

Barcelon — —— —
Sup erco mput ng " == FRIEDRICH-ALEXANDER

—

—

Center = UNIVERSITAT _
= == ERLANGEN-NURNBERG

UNIVERSITAT POLITECNICA
DE CATALUNYA

le Supercomputacion

OBDP 2021

