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Why AI/ML in Space?

Space missions demand unprecedented levels of precision,
autonomy, and reliability. Traditional software validation methods,
while mature, are insufficient for AI/ML systems due to their unique
characteristics.

• AI/ML enables:
• Autonomous decision-making in unpredictable environments.
• Real-time processing of large and complex datasets.
• Reduced reliance on ground-based human intervention.

• Key Challenge: There are no universally accepted standards for
validating safety-critical AI/ML systems in space.
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ECSS Standards Framework

The European Cooperation for Space Standardization (ECSS)
provides a robust framework for software qualification; however, it
was designed primarily for traditional systems.

• ECSS-Q-ST-80C: Defines software product assurance
requirements.

• ECSS-E-ST-40: Covers software engineering lifecycle
processes.

• ECSS-E-HB-40-02A: Guidelines for AI/ML development,
verification and validation.
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Software Criticality Levels

Space software is categorized by the severity of potential failures,
which determines the required rigor of independent validation.

Level Risk Description ISVV Requirement

CAT-A Life-threatening or mission-
critical failure

Level 2: Deep code & design
analysis

CAT-B Major mission degradation or
hardware damage

Level 1: External analysis

CAT-C Recoverable issue or minor
data corruption

Standard development &
testing

Table 1: Criticality levels and corresponding validation rigor
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Traditional Qualification Process
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Testing Paradigm Shift
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ISVV Adaptation Challenges

Traditional ISVV does not fully transfer to AI/ML — requiring new
validation methods.

Traditional ISVV Activities

• TAR: Requirements
validation

• DAR: Design evaluation
(partial)

• CAR: Code-level analysis

AI/ML Validation Needs

• Dataset analysis (bias &
coverage)

• Explainability/interpretability

• Robustness testing
(adversarial inputs)

• Resilience to SEUs
(radiation faults)
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Qualifying AI/ML for CAT-C/B/A

The approach to qualification must be tailored to the system criticality
level, ensuring that the appropriate rigor is applied to mitigate risks
effectively.

Crit. Qualification Solutions

C Basic testing and documentation to ensure functionality
and traceability.

B Dataset V&V to ensure representativeness and quality,
combined with Independent Model Verification and Val-
idation for thorough assessment.

A Formal verification, redundancy, continuous monitor-
ing, and provability analysis to ensure safety and relia-
bility.
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Motivation: Trustworthy AI in Safety-Critical Aerospace

The integration of AI/ML in aerospace offers transformative benefits
but also introduces significant risks that must be managed.

• Benefits: Improved autonomy, efficiency, and mission success
rates.

• Risks: Catastrophic failures due to unpredictable AI/ML
behavior.

• Regulatory Landscape: Emerging standards (e.g., EU AI Act,
ISO 21448) aim to address these risks but remain fragmented.
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Key Contributions

This work provides a comprehensive framework for adapting existing
standards and introducing new methodologies for AI/ML assurance.

• Gap Analysis: Identifies limitations of current ECSS standards
for AI/ML.

• Aerosafe Methodology: Manages residual uncertainty in AI/ML
systems.

• AMLAS Integration: Aligns Assurance of Machine Learning in
Autonomous Systems (AMLAS) with ECSS processes.

• Practical Tools: Checklists and lifecycle-phase guidance
tailored to system criticality.

• Assurance Confidence: Structured safety arguments with
explicit confidence levels.
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AMLAS Overview

AMLAS provides a lifecycle-oriented approach to AI/ML assurance,
focusing on uncertainty management and safety case construction.

• Structured methodology for AI/ML assurance.

• Addresses lifecycle uncertainty, robustness, and explainability.

• Does not fully align with ECSS Verification, Validation, and
Review processes.

Date: September 24, 2025
11/21

PROPRIETARY INFORMATION
© 2025 Thales Alenia Space All rights reserved



Aerosafe Methodology

The Aerosafe methodology extends AMLAS to provide a tailored
solution for aerospace applications, ensuring compliance with ECSS
standards.

• Defines assurance scope and allocates safety requirements.

• Manages ML-relevant data across the lifecycle (quality, bias,
configuration).

• Embeds learning, verification, and deployment activities within
ECSS reviews.

• Introduces Independent Model Verification and Validation (IMVV)
for high-criticality systems.
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Independent Model Verification and Validation (IMVV)

IMVV provides an independent and rigorous assessment of AI/ML
models, ensuring they meet safety and performance requirements.

• Core Activities:
• Validation of requirements and data integrity.
• Assessment of model accuracy and deployment risks.

• Category A Systems: Additional regulatory conformance
checks and post-deployment monitoring.

Date: September 24, 2025
14/21

PROPRIETARY INFORMATION
© 2025 Thales Alenia Space All rights reserved



Assurance Artifacts and Checklists

Aerosafe delivers comprehensive and traceable artifacts to support
safety assurance and certification.

• Data specifications and versioned datasets.

• Model documentation and simulation test specifications.

• Safety case modules with explicit confidence levels.
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Discussion and Limitations

While the Aerosafe methodology addresses many gaps, several
challenges remain in the assurance of AI/ML systems.

• Distributional Shifts: Changes in data distribution over time can
impact model performance.

• Rare Edge Cases: Infrequent but critical scenarios must be
identified and addressed.

• Explainability: Understanding AI/ML decision-making remains a
challenge.

• Scalability: Formal verification and high-fidelity simulation are
resource-intensive.
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Challenge: AI + Science Synergy

AI/ML and scientific discovery operate on different paradigms,
creating both challenges and opportunities for synergy.

• Inherent Incompatibility:
• AI is connectionist (e.g., neural networks, data-driven).
• Science is symbolic (e.g., theories, equations).

• Goal: Develop AI/ML systems that support curiosity-driven
scientific discovery.
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KANs for Science

KANs offer a promising approach to bridge the gap between AI/ML
and scientific discovery by combining interpretability with
performance.
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KAN vs. Traditional Multi-Layer Perceptron (MLP)
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Conclusion: KANs for Safety-Critical Applications

The Aerosafe methodology provides a pragmatic and robust
framework for the safe integration of AI/ML in aerospace systems.

• Integrates AMLAS with established ECSS standards.
• Manages uncertainty and tailors assurance activities to system

criticality.
• Emphasizes data management, IMVV, and formal reviews.

KANs demonstrate significant potential for safety-critical applications
due to their interpretability and performance.

• Better interpretability compared to traditional deep neural
networks (DNNs).

• Comparable or improved accuracy in many domains.
• Suitable for applications where transparency and symbolic

reasoning are essential.

figs/kan_success.png

KANs in action: Case studies and success stories
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Questions and Answers

Thank You!

We welcome your questions and feedback.
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