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ABSTRACT

The careful blending of artificial intelligence with the mathematically rigorous control theory
comes with numerous promises for space applications and thereby is projected to revolutionise
the space industry. In the same spirit, this article comes as a part of the ESA-i4GNC software
framework developed towards analysing the usage of artificial intelligence in guidance, naviga-
tion and control for futuristic space vehicles. A learning-based control and state estimation for
attitude regulation of a reusable launcher for landing scenario is proposed in this paper. Specif-
ically, a learning-based model predictive control is used for regulating the attitude dynamics of
the reusable launch vehicle model during its landing scenario and a learning-based Kalman Fil-
ter implementation using Gaussian Process for state estimation is proposed in this work. The
combination of noise filtering by Gaussian process improving the state estimation and the usage
of learning-based model predictive control to estimate the unmodeled dynamics from the input-
output data ensures that landing scenario for the reusable launch vehicle is efficiently handled.

1 INTRODUCTION

Artificial Intelligence (AI) has great potential to solve completely many real-world problems and aid
in the process of finding good sub-optimal solutions for difficult real-world tasks. Though the usage
of Al-based techniques proposed as early as [1] has been setting the trend in many industries, its usage
in space applications as mentioned in [2]-[6] is still in its infancy. This is mainly due to the lack of
rigorous safety guarantees for many Al-based techniques and combined with the space industry being
an expensive arena where failure tolerance is extremely small. However, the current idea of blending
Al techniques into the mathematically grounded control theory approaches seems to have opened up
a fertile area of application for the Al and thereby mitigating their application hindrance with the in-
culcation of new safety guarantees from control theory perspectives. Interested readers are referred to
the recent works on Al for space research by many worldwide space research organizations like ESA
[2], NASA [7], DLR, ISRO, and CNSA. This paper contains two main problem statements addressed
in relation to the project concerning the usage of artificial intelligence for guidance, navigation and
control for futuristic space vehicles. Specifically, within that project, a two stage to orbit launcher
called RETALT1 was defined by the consortium, and a flight dynamic simulator was developed by
Deimos Space [8].
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1.1 Learning-based Model Predictive Control for Attitude Regulation of a Reusable Launcher

We present the learning-based model predictive control technique as described in [9] for controlling
the attitude dynamics of the RETALT vehicle during its landing phase. Specifically, the linearized
model at different points along the nominal reference trajectory was utilized as the main nominal
plant for the design of control action. We consider a more accurate modelling of the RETALT attitude
dynamics parameterized by different time steps with ground truth values of parameters defining the
model being estimated. Specifically, a simplified single axis rotation dynamics was assumed be the
nominal model. Given the nominal plant, it would not be suitable to device a control strategy for
just the nominal dynamics if the plant can possibly have potentially nonlinear unmodelled dynamics.
This clearly calls for learning the unmodelled dynamics while aiming to control the RETALT vehicle
and such a learning-based regulation is necessary to ensure soft landing despite having bounds on
the knowledge of system dynamics. The unmodelled dynamics were learned using an oracle function
employing a linear least squares based estimation. This specific learning part involving the estimation
of the unmodelled dynamics ensures that both the optimal cost is reduced using the learning-based
adaptive model and the constraint satisfaction is guaranteed using the nominal model. That is, both
optimised performance objective and the robustness guarantees are obtained simultaneously. This
specific control ideology was applied to regulate the attitude error dynamics of the RETALT model
developed as a part of the ESA-i4GNC software framework with the simulations resulting in promis-
ing results. While the methodology is tailored for learning the unmodelled dynamics using a linear
oracle module, it can very well be extended to learn complex nonlinear unmodelled dynamics using
a potential neural network based nonlinear oracle module.

1.2 Learning-based Kalman Filter Using Gaussian Process for Attitude Regulation of Reusable
Launcher

Most aerospace applications assume that there already exists a high-performing navigation system
that provides estimates of all the state variables needed for feedback and learning algorithms. It is in-
teresting to study how navigation (state estimation) can be improved by online learning of unmodelled
and possible state-dependent random disturbance processes because the quality of the state estimates
directly impact the achievable control performance at the lower loop level. While the Kalman fil-
ter and its various extensions that rely on accurate models of the plant is realistic for space vehicles,
knowing in advance the type and intensity of disturbances can sometimes be impossible. Hence learn-
ing can be crucial for fine-tuning the navigation system during a mission. We propose to apply the
Learning-based Kalman filter to the RETALT reusable launch vehicle model, where we estimated two
components of the vehicle attitude vector (the yaw or the pitch) and their derivatives (the yaw rate or
the pitch rate) based on noisy measurements and knowledge of the control inputs. Specifically, the
Gaussian process based approach is advocated to learn the unknown stochastic function which rep-
resents the state-dependent disturbance vector. A simulation sequence with a learning-based Kalman
filter with the linear correlation model for the RETALT vehicle highlighted a significant improvement
in estimator performance.

Following a short summary of notations used in the paper, the rest of the paper is organised as fol-
lows: the problem formulation for the attitude regulation of a reusable launcher is established in §2
and the control module using the learning-based MPC is explained in 2.1 and the learning-based state
estimation is discussed in 2.2. The proposed approaches are demonstrated in §3 using the RETALT
vehicle model developed in the ESA-i4GNC software framework. The paper is finally closed in §4
along with the summary of results and directions for future research.
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Notations

The cardinality of the set A is denoted by |A|. The set of real numbers, integers and the natural
numbers are denoted by R, Z, N respectively and the subset of real numbers greater than a given
constant say a € R is denoted by R ,. The subset of natural numbers between two constants a,b € N
with a < b is denoted by N°. The operator & denotes the set difference. For a matrix A € R™*", we
denote its transpose and its trace by AT and Tr(A) respectively. We denote by S™ the set of symmetric
matrices in R™*". For a symmetric matrix A € S”, we denote by A > 0 to mention that A is positive
definite and by A > 0 to mention that A is positive semi-definite. An identity matrix of dimension n
is denoted by I,,. Given z € R", A € R™*" B € R™*", the notations ||z||°, means z T Az.

2 PROBLEM DESCRIPTION

2.1 Control Using Learning-based Model Predictive Control (LBMPC)

First, we investigate the problem of controlling the attitude dynamics of the RETALT vehicle during
its landing phase. Specifically, the linearized model at different points of the nominal reference tra-
jectory is given and the resulting linear system is utilized as the main nominal plant for the design of
control action. We describe how to utilize the learning-based model predictive control to regulate the
attitude dynamics of the RETALT plant at different reference trajectory points. Such a learning-based
regulation is necessary to ensure soft landing despite having bounds on the knowledge of system
dynamics. We consider a more accurate modeling of the RETALT attitude dynamics parameterized
by different time steps with ground truth values of parameters defining the model being estimated.
Assuming them to be the nominal model at the given time step, we present here the attitude dynamics
regulation using the LBMPC procedure.

e minimize J(xg,uy ) subject to g Xk
— o xps1 = Axp +Bug + g(xp ) Plant
X € X» ug € Uu
t Learning |-—
8(x, u) |

Figure 1: Learning-based Model Predictive Control (LBMPC) general principle

2.1.1 Nominal System Model

We consider a model of the RETALT vehicle defined using a simplified single axis rotation dynamics.
Specifically, we consider both the yaw and pitch dynamics to be identical and decoupled resulting in
the total attitude dynamics. Our model consists of two parameters name the aerodynamic instability
coefficient ag and the control efficiency parameter k; and the model is given by

Ky

2 —ag

G LV (S ) = ( 1)
The knowledge of the true values of both the parameters at different times of landing is assumed to be
known in advance and this in turn gave us the required nominal model to start the LBMPC procedure.
The system defined by the above dynamics at different time steps is depicted using the sequence of
bode plots in Fig. 2.
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Figure 2: Bode plot containing the ag, k1 parameter variation based on linearization at six different time steps
is shown here.

2.1.2  LBMPC Theory

The LBMPC theory presented here is adopted from [9] which is basically a modified Robust MPC
as in [10] with additional learning component module attached to it. Consider a discrete-time LTI
system with modelling error given by

T = Az + Buy + wy + g(xe, ue), )

where at time ¢t € N, z; € R" denotes the system state, u; € R denotes the control inputs, w; € R"
denotes the process disturbance and g(z;, u;) € R™ denotes the unmodelled nonlinear dynamics and is
considered to be a function of both system states and control inputs at time ¢. The matrices A € R"*",
and B € R™*" denoting the system matrix and control input matrix respectively are known in ad-
vance. The system is supposed to operate under operational constraints namely the state constraints
X C R", control input constraints I/ C R™, and terminal state constraints {2 C R". For simplicity,
the constraint sets X', U/ and €2 are assumed to be convex polytopes in appropriate dimensions.

Assumption 1: For simplicity, the system’s unmodeled dynamics is assumed to be linear ' in system
state and control inputs. That is, the system’s unmodeled dynamics is governed by unknown matrices
H e R G € R™*"™ and is given by

9(xp,uy) = Hry + Guy, YVt €N, (3)

Assumption 2: There exists an Oracle module (linear Oracle ?) which gives the estimate of the
system’s unmodeled dynamics when provided with the history of system’s input-output data. That is,

Gi(z,u) = Oy, uy) = [:[txt + étut- “)
The ideology behind the LBMPC technique as shown in Fig. 1 is to

1. use a constant LTI model (nominal model) to predict the system’s response and guarantee robust
constraint satisfaction and,

!Future work will seek to have nonlinear unmodelled dynamics.
Future work will seek to have nonlinear Oracle based on neural networks to capture nonlinear unmodelled dynamics.
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2. use a separate model to adaptively approximate the true (possibly nonlinear) system dynamics
as new data becomes available, which yields more accurate state and input predictions to be
used in the objective function.

Let us denote the nominal state of the system that evolves without any disturbance or unmodelled
dynamics at time ¢ by z;. Similarly, let us denote the adaptive state of the system that evolves with
the effect of disturbance and the estimated unmodelled dynamics at time ¢ by ;. The main essence of
the LBMPC algorithm is to repeatedly solve a constrained optimization problem in a rolling horizon
fashion with prediction horizon length given by N & N, starting both the nominal and adaptive
system states from a given state x; and applying the first control input 7 from the resulting control
input sequence u v := {1, | t € NjTV "'}, That is, starting from a state Z; = x; and &; = x, solve
the following constrained optimization problem in a rolling horizon fashion:

t+N—1
migimize —[lFenlfp+ 35 (1l + i) 50
subject to Tpapr1 = AZpp + By + Of( ook, Uprk), (5b)
Uprp = KZTpip + oo €U S (KRy), Yk € NJ' 1, (5¢)
Toihi1 = ATyyp + Biligip € X © Ry, Vb € N (5d)
TeyN € QS Ry. (5e)

2.2 State Estimation Through Learning-based Kalman Filter (LBKF) Using Gaussian Process

Plant

Uk Tit1 = ATkt Yk
| Buk +9(zug)

a(-) Kalman

€k

Learning 4
k

Figure 3: Learning-based Kalman filtering (LBKF) general principle

It is a common practice to assume that there already exists a high-performing navigation system for
the relaunch vehicle that provides estimates of all the state variables needed for feedback and learning
algorithms. It is nevertheless interesting to study how navigation (state estimation) can be improved
by online learning of unmodeled and possible state-dependent random disturbance processes. Nav-
igation is an essential part in a GNC system, since the quality of the state estimates directly impact
the achievable control performance at the lower loop level. State estimation algorithms—such as the
Kalman filter and its various extensions— rely on accurate models of the plant, which are used to
predict the future state of the vehicle based on the current estimated state and the current control input
(if any). The predicted state is combined with filtering of measurements (partial observations of the
plant state) to yield a new state estimate. Besides a linear or nonlinear dynamics model of the plant,
it is also necessary to know the statistical properties of the various random disturbances acting on
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the system. While the former is realistic for space vehicles, knowing in advance the type and inten-
sity of disturbances can sometimes be impossible. Hence, learning can be crucial for fine-tuning the
navigation system during a mission. There exist many variants of LBKF. The approach applied here
represents a slightly simplified version of the Gaussian-process-based approach proposed in [L.2020].
The algorithm assumes an augmented linear state-space system

Ty = Az + Buy + Gg(xg, ug) + wy, (6)
yr = Cap + v, (7

where the (a-priori) unknown stochastic function g () represents a state-dependent disturbance vec-
tor of size no greater than the measured output vector y;. Disregarding the nonlinear function g(-),
standard Kalman filter assumptions apply: The disturbances processes wy and v, are assumed in-
dependent, white, and normally distributed with zero mean and known covariances R; and R, and
the initial state is Gaussian with mean %, and covariance Fy. A block diagram of a Learning-based
Kalman filtering application is shown in Fig. 3. The Kalman filter uses knowledge of the plant model
(the matrices A, B, G, and (') together with the online collected control inputs u; and measured plant
outputs yy to create the current state estimate 2. Based on the estimates and the prediction errors

e = T — Axp_y — Buy_y ®)

The goal of the learning part if to establish a statistical relationship between the current estimate
and the output of the unknown function g(xy,uy). This knowledge can then be used to produce a
state- and/or input-dependent disturbance estimate §(Zy, 4y, ), thus improving the performance.

3 SIMULATION RESULTS

In this section, we demonstrate our proposed approach of learning-based control and learning-based
state estimation applied for relaunch vehicle model which is integrated into the ESAi4GNC frame-
work developed. We start by discussing the simulation results using the LBMPC followed by simula-
tion results of LBKF.

3.1 LBMPC Problem Setup

We consider a linear perturbation to our considered nominal model (A, B). That is, g(zg, ux) =
Hz + Gu, where H = 0.001A,G = 0.001B. The considered continuous system was then dis-
cretized using a sampling time of 0.1 seconds. Since both pitch and yaw dynamics are consid-
ered to be decoupled, we assumed a non-zero initial condition of [% 0—3% O}T for the angular
positions and zero angular velocities. We used a maximum time-step of 100 and considered an
MPC horizon length of N = 10 time steps. The state and input penalty matrices were chosen to
be Q = I,, R = I,,. The states were given a lower bound of —7 and an upper bound of 7. The
noise was assumed to be zero for simplicity. The first and third state in the modeling error was as-
sumed to be in [—0.0001(zo (1)) 0.0001(:150(1))2]T and [—0.0001(zo(3))? 0.0001(:150(3))2]T re-
spectively and these bounds were used to compute the modeling error polytope for performing robust
constraint tightening. For ease of exposition, we had used a quadratic nonlinearlty. Since, the thrust
was assumed to be constant, we essentially had to use only the other two control inputs in our linear
model and the bounds was chosen from the RETALT parameters definition excel file and they were
[—0.1745328, 0.1745328] both the inputs respectively. The oracle module of the LBMPC performed a
simple linear regression from the input-output data to estimate the unmodelled dynamics (in our case,
the ' & G perturbation matrices). Finally, an infinite horizon LQR gain was used to construct the
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Figure 4: Simulink model of LBMPC within the ESA-i4GNC framework is shown here.

robust disturbance invariance set which was then used for robust constraint satisfaction by the state
and control trajectories of the LBMPC algorithm. The LBMPC optimization problem was solved
using CVX and the robust constraint tightening was performed using the MPT Toolbox.

3.2 LBMPC Implementation

Since the LBMPC module is integrated within the ESA-14GNC software framework, the implemen-
tation details using the Simulink model is shown in Fig. 4. Initially, the system dynamics at different
time steps corresponding to different ag, k1 values are prepared and with each system dynamics, the
corresponding control invariant set and the other error polytopes are generated using the MPT tool-
box. Once the polytopes are generated, the LBMPC simulation can be started. When the LBMPC
simulation ends, the stored values of system states, attitude errors and other interesting variables of
interest are plotted by the ESA-i4GNC tool. The detailed steps are as follows:

1. Retrieve the system matrices according to the time of operation
2. Build the observation matrix Y = X (¢ + 1) — AX(¢t) — BU(t) using all the data from time zero

3. Call the oracle to output the estimate of the perturbation matrices (f[ G ) based on the observa-
tion matrix using the linear regression

4. Using the newly obtained estimates of the perturbation matrices, perform the LBMPC optimiza-
tion where the cost function uses the learned model while constraint satisfaction (tightening) is
taken care by the nominal dynamics to return the control input ().

5. Apply the first input to propagate one step forward to ¢ = ¢ + 1 and repeat the process again.

3.3 Discussion of Results

The results show that a near-perfect attitude control for the RETALT vehicle is achieved by the
LBMPC algorithm for all the linear models obtained from the reference trajectory information. It
is clear from Fig. 5 that LBMPC was able to stabilize and regulate the system dynamics with dif-
ferent ag, k parameter values defining the attitude system dynamics at different time steps along the
reference trajectory of the RETALT vehicle. It was observed that the system dynamics at later time
steps during the landing phase near the touch down was the harder one to regulate as it took by far
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the most number of time steps to achieve near perfect regulation. In the next simulation, we changed
the problem formulation from attitude regulation to attitude tracking, where the LBMPC controller
was implemented to successfully track the attitude values from the reference trajectory. The control
thrust reference from the reference trajectory was used without any modification. The error signal
formed using the reference attitude and the actual attitude were fed into the LBMPC controller which
calculated the necessary control signal using the procedure described above. We see similar results in
the attitude reference tracking as shown in Fig. 7 and Fig. 6. To qualitatively study how the learning
enabled the working of LBMPC, we plotted the learning error H — H and G — G and found that
they had reduced over time as shown in Fig. 9. Further, we observed that the dynamics switching had
happened before the linear regression had effectively converged to a greater accuracy and it was found
to be the effect of starting the linear regression process with both estimates H and G being initialized
to zero. With intelligent starting guesses, this could be rectified. This also shows that switching times
should happen ideally when the estimates from one model have converged to their true values suffi-
ciently closer, so that the true perturbation is learned to a greater extent by the LBMPC procedure.
This clearly shows that an even better nonlinear oracle such as the neural network can also be em-
ployed to estimate the perturbation quantities which however is out of the scope at this point in time.

25

201

151

Errors

101

0 5 10 15 20 25 30 35
Time

Figure 9: Estimation errors by the LBMPC while learning the unmodelled dynamics is plotted here.

3.4 LBKF Problem Setup

Applying the LBKF to the RETALT reusable launch vehicle model, we focused on the problem of es-
timating two components of the vehicle attitude vector (the yaw or the pitch) and their derivatives (the
yaw rate or the pitch rate) based on noisy measurements and knowledge of the control inputs. There
are several possible absolute attitude sensors for space vehicles, including various optical sensors and
magnetometers, as well as relative movement sensor such as gyroscopes. For the purpose of illus-
trating the application of LBKF, we use an abstract measurement model, where some absolute angle
sensor provides a noisy reading of the yaw and pitch and regular intervals. The measurement noise
is modeled as Gaussian white noise. We can also model that the angle sensor becomes unavailable
during some time interval. The LBKF Simulink implementation is shown in Fig. 10.

3.4.1 Dynamics Models

To provide experimental data for testing the LBKF during a landing sequence, we considered a sce-
nario where the simulated RETALT vehicle should perform a vertical decent. Initial errors in the
yaw or pitch are regulated to zero by simple, independent PID controllers acting on the thrust vector
controls (TVCs). A separate, independent PID controller regulates the thrust of the vehicle according
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Figure 10: Simulink diagram of the LBKF implementation is shown here.

to a pre-specified decent trajectory. For the purpose of state estimation, we model each angle dynam-
ics (yaw, pitch) independently as shown in Fig. 11. In the simulation model, all the control loops
interact through the nonlinear rigid body dynamics. For small angles, however, the interaction can be
neglected in the filter designs. A double integrator model for each attitude axis was identified from

w 9@ v
u (g é Double é Y
vC Integrator

Figure 11: Simplified process dynamics model for single-axis attitude estimation

the RETALT simulation model at the middle of the nominal descent trajectory as used as the basis of
the Kalman filter. In the simulation model, the measurement noise v is explicitly added (and its vari-
ance hence being known exactly), while the process noise w represents unmodeled disturbances and
unknown initial state deviations. In the Kalman filter, the assumed variance of the process noise was
tuned to give reasonably fast convergence in nominal conditions. The control signal u was assumed
to be known by the state estimator, but the TVC dynamics were assumed unknown. The simulation
model includes some low-pass filter dynamics as well as a saturation as well as a rate limitation (both
symmetrical) for the actuator. The PID controllers were (de)tuned so that the saturation and rate lim-
itations would be active during parts of the landing sequence. The output of the Kalman filter was
not used for feedback control, as this would complicate the interpretation of the results. Rather, the
various filters were running in open loop based on the simulated measurement and control signals,
and their outputs were stored and analysed offline.

3.4.2 Input Data

Some typical test inputs (both measured outputs and known control inputs) generated by the simula-
tion model are displayed in Fig. 12 and Fig. 13. Here an example of yaw angle control is shown,
but the pitch angle dynamics work very similarly (except for a different in sign for the control signal
applied). Measurement samples are taken every 0.2 seconds, and the simulation length is 30 seconds
(just before the landing of the space craft). For the learning techniques, we consistently used the data
from the first 7 seconds (i.e., only 35 samples) for training and then the remaining 23 seconds for
performance evaluation. It is seen that the regulation performance is quite poor and that the actuator
limitations are significant—again, this is to provide sufficiently exciting input data to the learning
algorithm and to amplify the performance difference between the linear and learning (nonlinear) esti-
mation techniques within a very short sequence.
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Figure 12: Measured output corresponding to Figure 13: Typical input sequences for the filters, gen-
input sequences for the filters, generated by the erated by the RETALT simulation model.
RETALT model.

3.4.3 Filter Designs

For the filter design, we considered several different estimators of increasing complexity:

1. A standard Kalman filter, tuned according to the nominal conditions around the process lin-
earization point. The assumed process noise parameter ; was tuned to give a reasonable
compromise between convergence and measurement noise rejection.

2. A Kalman filter with learned noise intensity, where the training data is used to estimate the
process noise intensity ;. The variance estimation will interpret the unmodeled nonlinear dy-
namics as extra noise, which will in turn make the Kalman filter rely more on the measurements
and less on the linear dynamics model.

3. A Kalman filter with learned linear model between the states/inputs and the residual process
noise. The predicted extra process disturbance is the next sample is by given by §(Zx, ugx) =
AZy + Buyg, where A and B are given by linear regression on the training data.

4. A Kalman filter with learned Gaussian process model capturing the (potentially nonlinear)
correlation relationship between the states/inputs and the residual process noise. The predicted
extra process disturbance is the next sample is by given by the Gaussian process output §(Z, uy)
and includes a state-dependent estimate of its uncertainty. This approach is explained in detail
in [11].

A preliminary investigation revealed that the control signal u; contained the bulk of the prediction
power. This is not surprising, since the unmodeled actuator dynamics and saturation constitute the
major nonlinearities for the given scenario. Including the process state zj in the learned relationship
only contributed with more randomness, and in the end, worse estimator performance. Therefore,
we let both the linear regression model and the Gaussian process model capture a scalar-to-scalar
relationship between v and g. Training of the linear and Gaussian models was performed using the
Matlab commands cov and fitgrp respectively. A typical result is shown in Fig. 14. It is seen
that both models produce very similar results, and that a linear model is probably sufficient for the
given unmodeled dynamics. The data points at the control input saturation limits (+0.17) could
possibly be exploited for better predictions if combined with other input data, but it would require a
multidimensional model (with some other input variables than ).

3.5 Discussion of Results

The four different algorithm variants (standard Kalman filter, Kalman filter with adapted process
variance, learning-based Kalman filter with linear correlation model, and learning-based Kalman fil-
ter with Gaussian process model) were tested on a RETALT vehicle landing sequence, where the
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Figure 14: Learned relations between Kalman filter residuals & unmodeled additive disturbances are shown
here.

Filter Type \ Angle Mean Square Error | Angle Rate Mean Square Error
Standard KF 1.09 x 1072 4.18 x 1072
KF with Adapted Variance R, 1.03 x 1072 4.02 x 1072
LBKF with Linear Model 6.92 x 1073 1.77 x 1072
LBKF with Gaussian Process 7.68 x 1073 2.31 x 1072

Table 1: Estimation performance of different Kalman filters are shown here.

yaw angle was regulated from a starting position of 10 degrees during the descent. Noisy angle mea-
surements and the control input from the yaw attitude regulator were fed into the algorithm, which
operated in open loop. The first 7 seconds were used to collect data, then possible learning/adaptation
took place, and the last 23 seconds of the trajectory were used for evaluating the mean-square error
of the yaw angle and angular rate estimates. A simulation sequence with the standard Kalman filter
is shown in Fig. 15. The angle estimate looks fairly accurate, while the angular rate estimate has a
visible systematic error due to the model error in the actuation model. Using the first 7 seconds to
estimate the real process noise variance [?; yielded an improvement that was not visible by the naked
eye, so that graph was not included here. A simulation sequence with a learning-based Kalman filter
with the linear correlation model is shown in Fig. 16, and there the improvement in estimator perfor-
mance is significant. After the learning phase, the angular rate is more accurately tracked. Switching
to the more sophisticated Gaussian process model did not yield any further improvements, as seen in
Fig. 17. This was not expected, given the similarity of the two models for this use case. To numer-
ically evaluate the performance of the algorithms, 10 different noise sequences were generated and

Angle [deg]

Angle [deg]

Ang. rate [deg/s

Figure 15: Yaw angle and rate Figure 16: Yaw angle and rate es- Figure 17: Yaw angle and rate

estimation results using standard timation results using LBKF with estimation results using LBKF

Kalman filter is shown here. linear regression model are plot- with Gaussian process model are
ted here. shown here.
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Figure 18: Estimation error from the Monte-Carlo Figure 19: The nominal & dispersed yaw values from
trials are shown here. Monte-carlo trials are compared here.

tested on each variant, the averaged results over the ten runs being reported in Table 1. The standard
Kalman filter and the filter with the adapted process variance performed very similarly, with only
a few percent performance improvement for the latter variant. A larger improvement was obtained
for both of the learning-based Kalman filters, with the linear model being the overall best one. The
failure of the Gaussian process model to improve over the linear correlation model is probably due
to overfitting. For the considered problem setup, a linear model was sufficient to capture the major
model error in the control signal path. At last, to validate the proposed approach, Monte-Carlo trials
were conducted and satisfactory results were obtained as shown in Fig. 18 and Fig. 19.

4 CONCLUSION & FUTURE OUTLOOK

The LBMPC algorithm as implemented is quite general and can handle various types of model errors.
The simplest option is to use a linear oracle, and this was deemed sufficient for the attitude control
benchmark. Further, LBMPC was shown to result in attitude regulation for RETALT vehicle model
at different points along its reference trajectory making it a suitable candidate for implementation.
There are several directions for further improving LBMPC implementation in the future such as using
better constraint tightening as described in [12]. For instance, the coupling between the attitude and
position dynamics were neglected during this design. As a result, exact position tracking was not
achieved despite achieving a near perfect attitude error regulation. This could be the possible discus-
sion for the future along with the usage of interpolated ag, k; values between time steps for the online
implementation of LBMPC with accurate nominal dynamics.

LBKEF is a quite general technique for improving the performance of a state estimator in the pres-
ence of unmodeled (possibly nonlinear) dynamics. The method relies on identifying a a relationship
between the filter residual process (which under a perfect model should be white) and some state or
input signals in the system. A general challenge is to have enough training data to distinguish real
trends from noise. This can be especially difficult for relationships involving non-measurable state
variables, since these first must be filtered/smoothed. As with any adaptive approach, a blind ap-
plication of the technique is not likely not achieve good results due to the overfitting to noisy data.
We noted that a simple linear regression model yielded similar (even slightly better) results than a
Gaussian process model. Using more than one input variable (beside the control signal) degraded
the performance and was discarded early. In our application, it was obvious that the control signal

ESA GNC-ICATT 2023 — Venkatraman Renganathan & Anton Cervin 13



path was the main source of model errors, and such domain knowledge is typically needed to achieve
meaningful results. For asymmetrical and in general more nonlinear model errors, it could be worth
pursuing a Gaussian process. To tune the Gaussian process model parameters, especially the kernel
width, the general shape of the nonlinearity should ideally be known by the designer. To the best
of our knowledge, there does not exist any closed-loop performance guarantees for learning-based
Kalman filters. This is a major disadvantage of the approach. With noisy and insufficient amounts of
training data and lack of validation the performance could easily degrade. In our example, training
the Gaussian process blindly using all the default parameters in Matlab gave very poor estimation
performance (not shown here), which in turn may would actually have destabilized the spacecraft if
the filter were used in closed loop.
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