
FAST SEQUENTIAL CONVEX PROGRAMMING
WITH RELAXED CONVERGENCE CRITERIA

Alexander Popov(1), Cristiano Contini(1), Mattia Zamaro(1)

(1)Airbus Defence and Space Ltd.
Gunnels Wood Rd, Stevenage, SG1 2AS, United Kingdom

+44 1438 773000
alexander.popov@airbus.com
cristiano.contini@airbus.com
mattia.zamaro@airbus.com

ABSTRACT

In this paper, we recommend two related strategies which can enable fast termination of sequen-
tial convex programming algorithms. We first suggest a simple Hermite interpolation scheme to
represent the state solution, and we propose a broad condition for which the constructed solu-
tion can be feasible when implementing the algorithm with relaxed convergence criteria. We also
present a mesh refinement framework to ensure that this continuous-time trajectory satisfies the
system dynamics to a desired level of accuracy. This motivates an amended stopping condition
for sequential convex programming, using an integrated residual term as an additional measure
of error in the solution. The benefits of this framework are demonstrated using the case study of
guidance for an autonomous lunar lander with six degrees of freedom.

1 INTRODUCTION

In recent years, sequential convex programming (SCP) has emerged as a powerful class of meth-
ods for solving nonlinear trajectory optimisation problems [1]. These algorithms solve a series of
approximate convex optimisation problems, for which there already exist a variety of fast and ro-
bust solution methods [2]. Because of the relatively low computational cost of each iteration, SCP
schemes are potentially suitable for implementation on embedded systems with strict running time
requirements. A number of realisations of SCP have been proposed, boasting impressive results from
numerical experiment. Perhaps the two most prominent examples are SCvx [3] and GuSTO [4], both
of which are also supported by rigorous theoretical convergence analysis. However, SCP methods
remain relatively immature compared to classical techniques such as direct collocation, and one area
that has received very little practical consideration is the question of when an SCP algorithm should
be terminated. This can pose a difficulty for the designer, as a compromise must be made between
running time and solution accuracy. Additionally, a closely related question is how best to represent
the extracted solution.

In this paper, we address these questions by recommending a pair of strategies that can allow for
greater flexibility in the design of an SCP algorithm, specifically for implementations where the de-
sired output is a reference state trajectory to be followed using classical control techniques. This
represents a wide range of possible applications, such as on-board computation of optimal guidance

ESA GNC-ICATT 2023 – A. Popov 1

trajectories for spacecraft [5]. We argue the case for applying Hermite interpolation to represent the
state trajectory solution, and we suggest that this approach can be combined with relatively relaxed
stopping criteria on the algorithm, even if this results in some inconsistency between the state solu-
tion and the control solution. In particular, we justify this approach in the case when terminal state
constraints should be satisfied exactly. We additionally endorse the use of a mesh refinement scheme
for a wide range of problems, and we suggest a tailored framework for its incorporation in SCP algo-
rithms. By using such an approach, it can become considerably easier to choose appropriate stopping
criteria for a given application.

The remainder of this paper is organised as follows: Section 2 briefly introduces some fundamen-
tal concepts in trajectory optimisation and SCP. In Section 3, we discuss methods for representing the
continuous-time solution derived from an SCP implementation, and we describe the recommended
interpolation scheme. Following this, Section 4 describes the variable-resolution framework using a
simple mesh refinement routine. We illustrate the effectiveness of these strategies in Section 5, via a
lunar lander case for which we present numerical results. Section 6 concludes the paper.

2 PRELIMINARIES

2.1 Trajectory Optimisation

A trajectory optimisation problem aims to find the optimal evolution of a dynamical system over a
time interval T := [t0, tf] ⊂ R, such that a solution minimises a defined cost function while satisfying
a set of constraints. Since t0 and tf may be variables, the problem is often formulated over the fixed
interval T̃ := [0, 1], with the time parameterised by the non-dimensional variable t. For any t ∈ T̃ ,
the state vector x(t) ∈ Rnx of the system is given by the continuous state trajectory x : R → Rnx ,
and the system is controlled by a trajectory of free variables u : R → Rnu . The problem is further
characterised by a vector of constant parameters θ ∈ Rnθ , which includes the free boundaries of T if
this interval is not fixed. We now consider a general class of trajectory optimisation problems:

min
x(·),u(·),θ

π
(
x(0), x(1), θ

)
+

∫ 1

0

ρ
(
x(t), u(t), θ, t

)
dt (1a)

s.t. ẋ(t)− f
(
x(t), u(t), θ, t

)
= 0, ∀t ∈ T̃ , (1b)

γ
(
x(t), u(t), θ, t

)
≥ 0, ∀t ∈ T̃ , (1c)

ψE

(
x(0), x(1), θ

)
= 0, (1d)

ψI

(
x(0), x(1), θ

)
≥ 0. (1e)

Throughout this paper, we treat (1) as an optimal control problem, and so u can equivalently be defined
as a trajectory of control inputs. The cost function is written in Bolza form, comprising the Mayer
term π : Rnx ×Rnx ×Rnθ → R and the integral of the running cost ρ : Rnx ×Rnu ×Rnθ ×R→ R.
We assume the cost function to be continuous, but not necessarily smooth. The dynamical be-
haviour of the system (i.e., the dynamics) is described by the differential equations (1b), where
f : Rnx × Rnu × Rnθ × R → Rnx is continuously differentiable. The inequality constraints (1c)
are described by the continuously differentiable mapping γ : Rnx × Rnu × Rnθ × R → Rnγ , and
boundary conditions are captured in (1d) and (1e), where ψE : Rnx × Rnx × Rnθ → RnE and
ψI : Rnx × Rnx × Rnθ → RnI . The solution to (1) is the pair of optimal trajectories (x∗, u∗), as well
as the optimal parameters θ∗.

It is typically only practical to solve (1) with direct methods, in which the dynamic problem is

ESA GNC-ICATT 2023 – A. Popov 2

treated as a static problem, with the trajectories (x, u) replaced by the ordered set of variables V :=

{(x(t), u(t)), ∀t ∈ T̃ } ⊂ Rnx × Rnu , and (1b) and (1c) replaced by equivalent constraints on el-
ements of V . This translation is valid because the necessary conditions for optimality are equiva-
lent for both problems, but the nature of V means that the static problem has an infinite number of
variables. This issue is alleviated by instead discretising (x, u) over a mesh of N + 1 time nodes,
M := {τ0, τ1, . . . , τN} ⊂ T̃ , where 0 = τ0 < τ1 < . . . < τN = 1. M divides T̃ into N intervals
T̃k := [τk, τk+1], k = 0, 1, . . . , N − 1, and each interval T̃k has length hk := τk+1 − τk.

The process of discretising (1) over a mesh is known as transcription, and it results in a finite-
dimensional optimisation problem which can now be solved with efficient computational methods.
The transcribed formulation is an approximation of the original trajectory optimisation problem, con-
verging to the equivalent form as hk → 0, ∀k. Since numerical optimisation techniques become
increasingly expensive as the number of decision variables grows, a compromise between computa-
tional speed and accuracy must always be considered when implementing a transcription routine.

2.2 Sequential Convex Programming

In many instances, the transcribed optimisation problem is non-convex. Such a problem is gener-
ally NP-hard [6], [7], and hence it may be unsuitable for embedded applications where running time
must be limited. In contrast, many convex optimisation problems can be solved using algorithms with
polynomial-time complexity [8]. This property is exploited in sequential convex programming (SCP),
in which (1) is transformed into a convex problem via a series of approximations, and this problem
is then discretised and solved with fast convex optimisation methods. The convex problem is solved
multiple times in sequence, via an update rule that ensures that, with each new iteration, the solution
to the approximate problem approaches that of the true problem.

For an optimal control problem to yield a convex optimisation problem, the cost must be convex,
along with the functions which define inequality constraints. Additionally, the equality constraints
must be affine. For simplicity, we henceforth assume that γ, ψE , ψI and the cost are all convex
functions, and non-convexity is introduced in (1b) through the nonlinearity of f . This simplifica-
tion enables generalisation to a wide range of SCP methods, though many methods do admit broader
classes of problems, to which the work in this paper remains equally applicable. Nevertheless, the
form assumed here is very typical in many optimal control applications. Furthermore, there exist
techniques to relax non-convex constraints on u into a convex form, while retaining the same optimal
solutions as the original problem [9], [10]. As an additional simplification, we assume that the dy-
namical system is time-invariant, and hence f is not a direct function of time.

Considering the assumptions on (1), a convex approximation of the problem is obtained by linearising
f around a reference solution (x̂, û, θ̂) using a first-order Taylor approximation:

f
(
x(t), u(t), θ

)
≈ f̂

(
x(t), u(t), θ

)
:= f

(
x̂(t), û(t), θ̂

)
+
∂f

∂x

(
x̂(t), û(t), θ̂

)(
x(t)− x̂(t)

)
+
∂f

∂u

(
x̂(t), û(t), θ̂

)(
u(t)− û(t)

)
+
∂f

∂θ

(
x̂(t), û(t), θ̂

)(
θ(t)− θ̂(t)

)
,

(2)

where ∂f
∂· denotes a Jacobian matrix of f . Then the nonlinear equality constraints (1b) can be replaced

by the affine condition
ẋ(t)− f̂

(
x(t), u(t), θ

)
= 0, ∀t ∈ T̃ . (3)

ESA GNC-ICATT 2023 – A. Popov 3

In its current form, the new convex optimal control problem may suffer from two phenomena known
as artificial unboundedness and artificial infeasibility. The former is a consequence of the linearised
system deviating too much from the reference trajectory. Not only does excessive deviation decrease
the accuracy of the Taylor approximation, but it can also lead to the cost function becoming un-
bounded below. To avoid this problem, many SCP algorithms introduce a trust region to ensure that
the trajectory remains sufficiently close to the reference. This additional condition can be enforced
by adding trust region constraints to the problem, for example∫ 1

0

∥x(t)− x̂(t)∥2 dt ≤ ∆, (4)

where ∥·∥ is the Euclidean norm and ∆ is the radius of the trust region. An alternative approach is to
augment the cost function with a weighted term which penalises the integral in (4).

Artificial infeasibility occurs when the convex problem is infeasible, even though the original prob-
lem is not. This can happen if there is no trajectory which can simultaneously satisfy the naturally
convex constraints of (1) and the linearised constraints. Furthermore, the convex problem may be
infeasible if the trust region is so small that it does not admit any feasible trajectories. This issue can
be handled by introducing virtual control to ensure that the linearised dynamics always hold [3], [11].
For example, (3) can be amended to

ẋ(t)− f̂aug
(
x(t), u(t), θ, ν(t)

)
= 0, ∀t ∈ T̃ , (5)

where we define f̂aug
(
x(t), u(t), θ, ν(t)

)
:= f̂

(
x(t), u(t), θ

)
+ ν(t), the linearised dynamics aug-

mented with the virtual control trajectory ν : R → Rnx . If (5) is enforced, the cost function must be
augmented so that ν(t) is penalised, as a truly feasible solution cannot rely on any virtual control. An
alternative remedy for artificial infeasibility is the direct penalisation of state constraint violations in
the cost, without augmenting the linearised dynamics [4].

For the reasons described above, all SCP methods rely on an augmented convex trajectory optimi-
sation problem, making use of features such as trust regions and penalty terms in the cost function.
Additionally, all such algorithms solve a sequence of these problems, with the aim to converge to a
solution to (1). This is often done by combining the augmented problem with a suitable update rule
for each new iteration. For example, if the hard trust region constraint (4) is enforced, then ∆ is itera-
tively updated to reflect how much we ‘trust’ the current approximation: if the algorithm detects that
the approximation may remain valid even further from the current reference solution, then ∆ may be
increased, and in the converse case, the trust region shrinks.

Regardless of the nature of the convex problem and the update rules for algorithm parameters, SCP
schemes always compute the linearisations around the solution from the previous iteration. For the
first iteration, an initial solution guess is set as the reference triplet. A generic SCP procedure is
now outlined in Algorithm 1, where ACPi denotes the augmented convex problem at iteration i. The
reference solution used in ACPi is (xi, ui, θi), and any other iteration-specific features of the convex
problem are described by a set of parameters P i, which is updated in each iteration according to the
routine UpdateSubproblem. An example set may beP i := {∆i}, where ∆i is the current trust region
radius, with UpdateSubproblem representing the corresponding trust region update rule. Note that
there do exist SCP algorithms for which P i is always empty, in which case UpdateSubproblem is
redundant. The algorithm terminates according to convergence and feasibility criteria, defined using
a set of parameters E . While Algorithm 1 cannot encapsulate all SCP variations, it is able to represent

ESA GNC-ICATT 2023 – A. Popov 4

Algorithm 1 Sequential Convex Programming
Input: Initial solution guess (x0, u0, θ0)
Output: Solution (xi+1, ui+1, θi+1) to ACPi for some i ∈ N
Data: Initial subproblem parameters P0, termination parameters E , meshM

1: i = 0
2: while (xi)i∈N not converged or (xi, ui, θi) infeasible do
3: Solve ACPi overM for (xi+1, ui+1, θi+1)
4: P i+1 = UpdateSubproblem(xi+1, ui+1, θi+1, xi, ui, θi)
5: i← i+ 1
6: end while

a very broad class of methods, and thus it is sufficient as a conceptual introduction. For the remainder
of this paper, we assume the following property for Algorithm 1:

Assumption 1 If (1) is feasible, then (xi)i∈N converges, and the limit is a solution for (1).

For certain SCP methods, this assumption can be guaranteed by mathematical proof, subject to mild
conditions on the original problem [4], [12]. However, various other realisations of SCP have been
demonstrated to work well in practice, despite lacking rigorous convergence analysis [1]. Indeed,
some of the most impressive practical implementations of SCP are yet to be supported by a strong
theoretical foundation.

2.3 Transcribing the Convex Problem

Each ACPi is a convex optimal control problem associated with a linear system, and hence it can be
transcribed to a convex finite-dimensional optimisation problem, for which there exist many efficient
solution algorithms implemented in so-called solvers. Therefore, to implement Algorithm 1 on a
computer, a mesh M should be defined for this transcription. The control trajectory u can then be
approximated over M, such that it is defined continuously over T̃ but explicitly solved only at the
N+1 mesh nodes. We denote uk as the control vector at node τk, and ũ : R→ Rnu as the approximate
control trajectory. There are various ways to construct ũ, though this is typically done by defining N
continuous functions vk : R → Rnu , k = 0, 1, . . . , N − 1, to represent the control trajectory over
each mesh interval inM. These functions are often parameterised by the control vectors at the nearby
mesh nodes, and so we say that ũ is the parameterised control trajectory. A common parameterisation
is first-order hold (FOH), in which ũ is piecewise affine:

ũ(t) = uk +
t− τk
hk

(uk+1 − uk), ∀t ∈ T̃k. (6)

Having approximated the control trajectory with (6), an initial value problem (IVP) can then be posed,
describing the state trajectory from τk to τk+1 via the state transition matrix [13]. Numerically solving
the IVP in all mesh intervals yields discrete dynamical constraints

xk+1 = f̂d(xk, uk, uk+1, θ), k = 0, 1, . . . , N − 1, (7)

where xk is the transcribed state vector at τk, and f̂d : Rnx × Rnu × Rnu × Rnθ → Rnx is an affine
function. To complete the transcription, the inequality constraints are enforced at the mesh nodes
only, and the boundary conditions are naturally imposed at τ0 and τN . The cost function is restated in
discrete form, e.g., any integral is replaced by an approximate sum.

ESA GNC-ICATT 2023 – A. Popov 5

As well as FOH, there exist other transcription schemes based on direct approximation of u, and
the work in this paper is equally applicable to such methods. However, FOH is considered a superior
strategy in terms of both running time and accuracy [14], and hence we assume this scheme through-
out the remainder of the paper. We conclude by mentioning an alternative discretisation approach:
pseudospectral methods [15]. Although these can be combined with a mesh refinement strategy sim-
ilar to the one described in Section 4, we do not attempt to generalise our work to this class of
techniques. We note that pseudospectral methods can have advantages in terms of solution accuracy,
but they generally yield a more complex optimisation problem, resulting in the solver taking longer
to converge for each SCP iteration [14].

3 REPRESENTING THE CONTINUOUS-TIME SOLUTION

When the convex problem ACPi is solved, the immediate result from the solver is a finite set of so-
lution points {xi+1

0 , xi+1
1 , . . . , xi+1

N , ui+1
0 , ui+1

1 , . . . , ui+1
N , θi+1}, where xi+1

k ∈ Rnx and ui+1
k ∈ Rnu are

respectively the state and control vectors at τk, and θi+1 ∈ Rnθ is the associated parameter vector.
By definition, the FOH discretisation scheme assumed a piecewise affine control trajectory, and so
a continuous-time control solution ũi+1 : R → Rnu can be constructed by linearly interpolating be-
tween consecutive elements of the ordered set ui+1 := {ui+1

0 , ui+1
1 , . . . , ui+1

N }. A similar construction
for the state solution x̃i+1 : R → Rnx is not naturally available, as xi+1 := {xi+1

0 , xi+1
1 , . . . , xi+1

N }
is constrained according to (7), and the state trajectory x was never parameterised. The remainder
of this section considers possible representations of the state solution x̃i+1 recovered from ACPi. To
inform this discussion, we first introduce generic stopping criteria for SCP algorithms.

3.1 Stopping Criteria for SCP

Assumption 1 tells us that if we set a sufficiently strict convergence criterion for Algorithm 1 such
that it terminates in iteration i∗, then the extracted solution (x̃i

∗+1, ũi
∗+1, θi

∗+1) will be very close to
a true solution for (1). A reasonable condition for convergence is∫ 1

0

∥∥x̃i+1(t)− x̃i(t)
∥∥2
dt ≤ ϵρ, (8)

where ϵρ is some small positive scalar, and the integral can be computed with a numerical quadrature
scheme. While a convergence criterion is set to ensure that the solution is ‘sufficiently optimal’,
an exact solution can never be obtained. Therefore, an additional stopping criterion is introduced
to ensure that the represented solution at least satisfies the constraints (1b)-(1e) to some tolerance
level. The most critical obstacle to achieving this stems from the linearisation of the dynamics: if f
is badly approximated with (2), then the solution to the convex problem will be inconsistent with (1).
Therefore, a common stopping criterion is an upper bound on the deviation of the propagated state
trajectory from the discrete state solution xi+1. This is commonly expressed in terms of the local error
over each interval T̃k, k = 0, 1, . . . , N − 1. For any T̃k, an IVP of the following form is constructed
using information from ACPi:

y′ = f
(
y(t), ũi+1(t), θi+1

)
, t ∈ T̃k, y(τk) = xi+1

k , (9)

where y(t) ∈ Rnx and the solution y∗ : R → Rnx describes the evolution of the states over the
interval. The deviation associated with T̃k is then computed by comparing xi+1

k+1 to y∗(τk+1), and this
is then checked against some defined tolerance level. For example, by setting some positive scalar ϵδ,
the feasibility criterion may take the form

max
k

∥∥xi+1
k+1 − y

∗(τk+1)
∥∥ ≤ ϵδ. (10)

ESA GNC-ICATT 2023 – A. Popov 6

We now have two types of stopping criterion that should simultaneously be enforced: one indicating
sufficient convergence to an optimal solution, and the other ensuring that the solution is sufficiently
feasible. If (8) and (10) are to be used in Algorithm 1, then the set of termination parameters is defined
as E := {ϵρ, ϵδ}. Considering these features of the general SCP implementation, we now proceed to
discuss two different approaches for representing the state solution x̃i+1.

3.2 Solving an IVP for the State Trajectory

To extract x̃i+1, a possible strategy is to propagate the original nonlinear dynamics over T̃ (or even
over the true time interval T i+1, obtained by scaling the problem using information from θi+1). This
propagation is performed by solving an IVP of the form

z′ = f
(
z(t), ũi+1(t), θi+1

)
, t ∈ T̃ , z(0) = x0, (11)

where z(t) ∈ Rnx and the solution z∗ : R → Rnx forms x̃i+1. It is typically not possible to solve
(11) analytically, and so a closed-form expression for x̃i+1 cannot be obtained. However, accurate
numerical methods can be employed, such as the fourth-order Runge-Kutta scheme. This can be im-
plemented over any user-defined mesh of sufficient resolution.

There is a potential pitfall in recovering x̃i+1 by simulating the nonlinear dynamical evolution ac-
cording to ũi+1. In applications which demand very low computation time, such as in certain embed-
ded systems, it may not be feasible for an SCP algorithm to run until very strict stopping criteria are
satisfied. This motivates setting more relaxed termination conditions which can be met after only a
few iterations. However, if ϵρ and ϵδ are increased, then the state trajectory derived from (11) will
deviate from the discrete solution points encapsulated in xi+1. Because the constraints (1c) were only
enforced explicitly at the mesh nodes in ACPi, deviation from these N + 1 solution points may lead
to violation of state inequality constraints along the trajectory. Additionally, the solution x̃i+1 will no
longer satisfy the terminal conditions described in (1d) and (1e). While (1c) may be formulated such
that the system can afford to violate the nominal constraints by some small margin, it may not be ac-
ceptable to deviate from the terminal conditions. For example, this may be the case when generating
a trajectory to a precise target, such as for planetary landing with pinpoint accuracy.

This disadvantage motivates the adoption of a scheme that can construct x̃i+1 such that it exactly
satisfies the boundary conditions of (1). We now describe a natural approach that can achieve this,
subject to the condition that there are no equality constraints on the terminal control input, only on
the terminal state vector. This assumption holds true for many optimal control problems in practice.

3.3 Hermite Interpolation of the Discrete State Solution

To construct a state trajectory that exactly satisfies the terminal conditions, we simply ensure that x̃i+1

interpolates the points in xi+1. This also guarantees that any path inequality constraints on the states
will be satisfied at the nodes ofM. As a sensible strategy, we adopt Hermite interpolation to define
the following approximation:

x̃i+1 := qk(t;x
i+1
k , xi+1

k+1, f
i+1
k , f i+1

k+1), ∀t ∈ T̃k, k = 0, 1, . . . , N − 1, (12)

where f i+1
k := f(xi+1

k , ui+1
k , θi+1) and qk is a cubic polynomial. For clarity, the parameters are hence-

forth ignored in the notation, and each polynomial is written as qk(t). We define for some η ∈ R the
following four Hermite polynomials, which are the basis functions used to construct qk:

H00(η) := 2η3 − 3η2 + 1,

H10(η) := η3 − 2η2 + η,

H01(η) := −2η3 + 3η2,

H11(η) := η3 − η2.
(13)

ESA GNC-ICATT 2023 – A. Popov 7

We now define qk(t), ∀t ∈ T̃k, for k = 0, 1, . . . , N − 1:

qk(t) := H00

(
s(t)

)
xi+1
k +H10

(
s(t)

)
hkf

i+1
k +H01

(
s(t)

)
xi+1
k+1 +H11

(
s(t)

)
hkf

i+1
k+1, (14)

where we use s(t) := t−τk
hk
∈ [0, 1]. The function qk satisfies the following four conditions on the

boundaries of T̃k:
qk(τk) = xi+1

k ,

q′k(τk) = f i+1
k ,

qk(τk+1) = xi+1
k+1,

q′k(τk+1) = f i+1
k+1.

(15)

In summary, applying Hermite interpolation over all N mesh intervals results in a continuously dif-
ferentiable trajectory x̃i+1 which passes through all points in the set xi+1. Furthermore, the time-
derivative of x̃i+1 is exactly consistent with the dynamical equations of the system at the mesh nodes.
This scheme has the advantage of yielding a state trajectory which exactly satisfies the terminal con-
ditions in (1). However, this comes at a price. Since x̃i+1 has been constructed independently of ũi+1

and a corresponding nonlinear simulation procedure, it will generally not be possible for the system to
follow x̃i+1 by implementing ũi+1. While consistency between the two trajectories can be approached
as the SCP algorithm converges to an exact solution, we have proposed Hermite interpolation for the
case when the algorithm may need to use relatively relaxed stopping criteria.

In order to permit early termination of Algorithm 1 while still enforcing exact terminal constraints on
the state trajectory, we must ensure that the extracted solution x̃i+1 can be followed by the system.
The relation between x̃i+1 and ũi+1 can be characterised by the perturbed dynamics

˙̃xi+1(t) = ϕ
(
x̃i+1(t), ũi+1(t), θi+1, w(t)

)
:= f

(
x̃i+1(t), ũi+1(t), θi+1

)
+ w(t), (16)

where w : R → Rnx describes the residual of (1b) for the solution (x̃i+1, ũi+1, θi+1), and ϕ : Rnx ×
Rnu × Rnθ × Rnx → Rnx . Therefore, x̃i+1 will instead require the control trajectory us = ũi+1 + υ,
for some υ : R → Rnu . Depending on the nature of the system, us can either be determined entirely
with a feedback control policy, or it can be formed by combining the nominal control solution with a
feedback controller, as in tube-based model predictive control [16]. To guarantee the existence of a
feasible us, we must tighten the constraints on u in (1). That is, if U defines the set of feasible control
trajectories, then the posed problem (1) should enforce u ∈ UR ⊂ U , where the contracted set UR is
chosen such that us ∈ U . Equivalently, UR is associated with a suitable robust control invariant set
for the uncertain system ẋ(t) = ϕ

(
x(t), u(t), θ, w(t)

)
[17], [18]. A generic theoretical framework for

determining UR is beyond the scope of this paper, though this set may often be approximated using
Monte Carlo methods.

3.4 Measuring Error in the Hermite Interpolation Scheme

A convenient consequence of defining x̃i+1 with a piecewise polynomial is that the time-derivative of
the constructed solution can be obtained analytically. This allows exact computation of the dynamical
evolution of the represented state trajectory, which we denote by the function f̃(t):

f̃(t) := q′k(t), ∀t ∈ T̃k, k = 0, 1, . . . , N − 1, (17)

where each q′k is a quadratic function in t, parameterised by (xi+1
k , xi+1

k+1, f
i+1
k , f i+1

k+1). For an exactly
feasible solution, the dynamics of x̃i+1 will be equivalent to the nonlinear system dynamics evaluated
over the continuous-time solution (x̃i+1, ũi+1, θi+1). However, in the realistic case where x̃i+1 and
ũi+1 cannot both satisfy (1b) simultaneously, there will be some non-zero error

λ(t) = f̃(t)− f
(
x̃i+1(t), ũi+1(t), θi+1(t)

)
, ∀t ∈ T̃ . (18)

ESA GNC-ICATT 2023 – A. Popov 8

Since x̃i+1 is the assumed state trajectory solution for (1), the residual λ directly assesses the accuracy
to which the differential equations in (1b) are satisfied for the triplet (x̃i+1, ũi+1, θi+1). For each state,
enumerated with index j = 1, . . . , nx, we can subsequently assess the absolute local error µj,k over a
particular interval T̃k:

µj,k :=

∫ τk+1

τk

|λj(t)|dt, (19)

where λj(t) is the corresponding component of the vector λ(t) ∈ Rnx . As a more useful measure, we
define the relative local error ξk of the solution over T̃k [19]:

ξk = max
j

µj,k

wj + 1
, (20)

where wj is a weighting to account for the relative magnitude of each state.

4 VARIABLE-RESOLUTION SEQUENTIAL CONVEX PROGRAMMING

Thus far, we have paid little attention to the choice ofM. In fact, the mesh itself can significantly
influence the algorithm performance. A coarse mesh will result in a relatively small number of op-
timisation variables in ACPi, and so very little time is spent in the solver. Since the solver step of
Algorithm 1 dominates the running time in each iteration, it may be very desirable to accelerate this
phase. However, excessively large steps hk will result in lower solution accuracy.

Ideally, we use the smallest possible mesh that can achieve a desired level of accuracy. The opti-
mal mesh in this sense is not known a priori, and it may even vary between different realisations of
(1) for the same system. This motivates the implementation of an adaptive mesh refinement (AMR)
scheme. AMR is a popular class of heuristic techniques for efficient and accurate numerical trajectory
optimisation [19], [20]. The idea is very simple: solve a transcribed problem on a given mesh, then
assess the accuracy of the solution. In regions with excessive local error, refine the mesh by adding
more nodes and then transcribe the problem over the new mesh. This procedure is repeated until some
error tolerance is met. For each new iteration, the problem can be warm-started using the previous
solution, thus reducing computation time.

AMR fits very naturally into the SCP framework, as Algorithm 1 is already designed to repeatedly
solve a finite-dimensional optimisation problem, and the solution obtained in iteration i is already
stored for use in iteration i + 1. Algorithm 2 presents a general procedure for SCP combined with
AMR, using the UpdateMesh routine to implement mesh refinement. It is natural to combine the
Hermite representation described in Section 3 with the relative local error as defined in (20). Then
UpdateMesh adds ns points in any interval for which ξk > ϵλ, where ϵλ is a small positive scalar
and ns ∈ N is set by the designer. Note that this routine will not change the mesh if the measured
error is satisfactory over every interval. To guarantee an upper bound on the relative local error in the
solution, ϵλ is added to the set E .

The set of mesh refinement parameters R contains not only ns, but also the positive scale factor
σ, which is used to define a relaxed convergence tolerance ϵ̄ρ := σϵρ. The purpose of ϵ̄ρ is to detect
if the solution is sufficiently close to convergence that the mesh refinement routine can be triggered.
This condition is recommended, as the first few SCP iterations can yield very bad solutions, and so
they should not be used to assess which regions of T̃ require higher resolution. Indeed, if mesh re-
finement is implemented from the first iteration, then the mesh may quickly become excessively fine,
thus slowing the iterations significantly. Algorithm 2 represents a generic framework which can be

ESA GNC-ICATT 2023 – A. Popov 9

Algorithm 2 Variable-Resolution Sequential Convex Programming
Input: Initial solution guess (x0, u0, θ0)
Output: Solution (xi+1, ui+1, θi+1) to ACPi for some i ∈ N
Data: P0, E , initial meshM0, mesh refinement parametersR

1: i = 0
2: while (xi)i∈N not converged or (xi, ui, θi) infeasible do
3: Solve ACPi overMi for (xi+1, ui+1, θi+1)
4: if (xi)i∈N converged with relaxed tolerance then
5: Mi+1 = UpdateMesh(xi+1, ui+1, θi+1)
6: else
7: Mi+1 =Mi

8: end if
9: P i+1 = UpdateSubproblem(xi+1, ui+1, θi+1, xi, ui, θi)

10: i← i+ 1
11: end while

customised to the needs of the particular application. In our numerical experiments, we found that
it is often sufficient to set ns = 1, and using a larger value can rapidly increase the size of ACPi.
Additionally, we recommend setting a very coarse initial meshM0. Combined with the parameter σ,
this results in a small number of very fast iterations at the start of the algorithm, such that the convex
formulation can already represent (1) reasonably well after very little computation time.

5 EXAMPLE: 6-DOF LUNAR LANDER

To demonstrate the framework of variable-resolution SCP with Hermite interpolation of the discrete
state solution, we now present the case study of optimal descent guidance for a lunar lander.

5.1 Description of the Dynamical System

We consider a rigid lander with a main vertical thruster and sixteen small reaction control thrusters,
such that the overall propulsion system can control the vehicle in six degrees of freedom (6-DoF).
The control thrusters are distributed in sets of four (‘quads’) around the outside of the lander, such
that each quad consists of two opposing vertical thrusters and two orthogonal lateral thrusters. We
define the state vector x(t) :=

[
m ιTB rTR vTR pT qs ωT

B

]T ∈ R17, where m is the spacecraft mass
and ιB := [Ixx Iyy Izz]

T defines the non-zero components of the inertia matrix. The vectors rR
and vR respectively represent the spacecraft position and velocity in an inertial frame ΨR centred at
the landing site, such that zR points upwards in the local vertical direction. ωB denotes the angular
velocity of the vehicle in the body-fixed frame ΨB, and p ∈ R3 and qs ∈ R collectively form the
unit quaternion qR describing the attitude of ΨB relative to ΨR. We also define the control vector
u(t) :=

[
FT δ1 δ2 · · · δ16

]T ∈ R17, where FT is the thrust level of the main thruster, and each δi
defines the thrust from a given reaction control thruster. We hence define the system dynamics

ẋ(t) = g
(
x(t), u(t)

)
, (21)

where the function g is constructed according to classical laws of dynamics and kinematics, combined
with models for the variation of the mass properties, which we define now. The mass m(t) of the
vehicle decreases as propellant is used, and this is described by

ṁ(t) = −α
(
FT (t) +

∑
i

δi(t)
)
, (22)

ESA GNC-ICATT 2023 – A. Popov 10

where α is a scalar constant characterising the efficiency of the propulsion system. Similarly, the
evolution of the inertia components follows

ι̇B(t) = −
(
FT (t) +

∑
i

δi(t)
)
β, (23)

where β is a constant vector, related to α and the position of the propellant tank in ΨB.

5.2 Problem Formulation

For the system described above, we now formulate a free-final-time trajectory optimisation problem
for pinpoint lunar landing. The system dynamics are enforced over the fixed interval T̃ by adapting
(21) into the form of (1b), where θ represents the final time tf . We now describe the remainder of
the problem over the true time interval T , which is parameterised by θ. For all t ∈ T , we set the
control bounds FT (t) ∈ [FT,min, FT,max] and δi(t) ∈ [δmin, δmax], i = 1, 2, . . . , 16. The mass of the
spacecraft can never be lower than the dry mass (the mass of the vehicle without any propellant) and
so we enforce m(t) ≥ mdry, ∀t. Since the altitude of the lander can never be negative, we also set
rTR(t)e3 ≥ 0, ∀t, where e3 := [0 0 1]T . Furthermore, we constrain the angular rate of the body
according to ∥ωB(t)∥ ≤ ωB,max, and we set ϕmax to denote the maximum angle that the spacecraft
may tilt off vertical. We introduce boundary equality constraints x(0) = x0 and Ex(tf) = xf , where
xf ∈ R13 defines the stationary, upright, non-rotating spacecraft at the target point (i.e., the origin in
ΨR), and E := [013×4 I13] ensures that the terminal mass properties remain free. In this problem, we
choose to minimise propellant usage, which is equivalent to maximising the spacecraft mass at the
end of the trajectory. Hence we define the cost function as

J
(
x(tf)

)
:= −[1 01×16] x(tf). (24)

The trajectory optimisation problem can now be stated as follows: minimise (24) subject to the sys-
tem dynamics, the inequality constraints and the boundary conditions. We note that the inequality
constraints, the boundary conditions and the cost function can all be expressed as convex mappings,
and so the problem is only non-convex because of the nonlinear dynamics.

5.3 Numerical Results

To test our algorithmic framework, we have implemented Algorithm 2 in Julia with the conic solver
ECOS [21]. We use the penalty trust region method (PTR), a recent SCP algorithm that has demon-
strated very good practical performance, despite so far lacking a rigorous convergence analysis [11].
PTR combines virtual control with soft trust region constraints, in which the trust region radius itself
is a variable in ACPi. To drive the algorithm towards a solution, this variable is penalised in the
augmented cost function. For each extracted solution (x̃i+1, ũi+1, θi+1), three numbers are computed
to check the stopping criteria: a convergence measure ζρ, a local propagation error measure ζδ, and
a measure relating to the integrated residual of the dynamics ζλ. The algorithm terminates when
ζρ ≤ ϵρ, ζδ ≤ ϵδ and ζλ ≤ ϵλ.

Properties of the sample spacecraft are listed in Table 1, and the parameters of the implemented
algorithm are shown in Table 2. Using these parameters, the algorithm was tested on various ver-
sions of the problem, where each version is distinguished by the initial position and attitude states
rR,0, vR,0, qR,0 and ωB,0 (the initial mass properties are always given by the wet values in Table
1). An encouraging observation was that the algorithm performed similarly for a wide range of test
problems. To illustrate the behaviour of the framework, we present some results for a single prob-
lem, noting that the performance is representative of that observed in many other realisations of the

ESA GNC-ICATT 2023 – A. Popov 11

case study. Specifically, we use the following initial conditions, stated in SI units where applicable:
rR,0 = [300 200 500]T , vR,0 = [−1 1 1]T , qR,0 = (0, 0, 0, 1), based on scalar-last convention, and
ωB,0 = [0.2 0.2 0.1]T (in rad/s). These conditions may be practically unrealistic, but they result in a
more interesting problem on which to demonstrate the algorithm.

Table 1: Spacecraft parameters

Parameter Unit Value
mwet kg 5000
mdry kg 3000
ιB,wet kgm2 5000 · [1 1 1]T

ιB,dry kgm2 4000 · [1 1 1]T

α s/m 3e-4
β sm 1e-4 · [1 1 1]T

FT,min kN 2
FT,max kN 10
δmin kN 0
δmax kN 0.2
ωB,max rad/s 1
ϕmax

◦ 45

Table 2: Algorithm parameters

Parameter Value
ϵρ 1e-3
ϵδ 1e-2
ϵλ 1e-3
σ 1e2
ns 1
M0 {0, 0.2, 0.4, 0.6, 0.8, 1}

Figure 1 plots the interpolated state trajectory solution, with a simplified lander shown at certain
points along the path to illustrate the attitude. The progress of the algorithm is presented in Table
3, where mp is the mass (in kilograms) of propellant used in the latest solution, tCPU denotes the
computation time (in seconds) to solve ACPi, and N represents the number of intervals in the latest
mesh. Tests were performed on an HP EliteBook with Intel Core i5 2.6 GHz CPU.

Figure 1: The interpolated state trajectory solution, as seen from two different angles.

We note that, despite high error ζλ in the first few iterations, no points are added to the mesh, as
ζρ > σϵρ. Once ACP5 is solved, this convergence criterion is met, and so the mesh is refined in
all intervals. After two subsequent updates to the mesh, the resolution is now sufficiently high to
render ζλ acceptable, indicating that the polynomial interpolation between mesh nodes generates a
sufficiently feasible continuous-time trajectory. In the remaining six iterations, ζρ and ζδ continue

ESA GNC-ICATT 2023 – A. Popov 12

Table 3: Progression of the algorithm

i mp ζρ ζδ ζλ N tCPU

0 0.8355 9.202 154.7 1.000 5 0.0179
1 295.4 0.5900 345.1 2.930 5 0.0182
2 191.6 1.447 759.2 3.548 5 0.0237
3 221.1 0.8105 408.4 0.5460 5 0.0246
4 178.4 0.1201 137.5 0.2900 5 0.0158
5 183.4 0.05591 30.66 0.1623 5 0.0138
6 177.5 6.425e-3 3.785 0.01766 10 0.0591
7 174.9 2.475e-3 0.4126 1.883e-3 20 0.1084
8 172.8 1.712e-3 0.02919 8.001e-4 21 0.0979
9 171.0 1.506e-3 0.01422 7.646e-4 21 0.0991
10 169.4 1.356e-3 0.01148 7.319e-4 21 0.0931
11 167.9 1.230e-3 9.785e-3 7.147e-4 21 0.1264
12 166.6 1.090e-3 8.452e-3 7.643e-4 21 0.1526
13 165.5 9.152e-4 7.174e-3 8.074e-4 21 0.1216

to decrease, as the linearised dynamics are still not representing the true system well enough. As
the algorithm progresses, we can be increasingly confident that a feasible solution can be recovered
(particularly if we formulate the original problem with tightened control constraints), and we do not
attempt to keep iterating until an optimal solution is obtained. Indeed, observing the changing mp in
Table 3, its value is still decreasing substantially by the time the algorithm is terminated at i = 13.
It is reasonable to assume that we can then extract a ‘near-optimal’ solution, and we note that exact
optimality is generally not required in real applications. A final observation from Table 3: for a given
mesh size N , the computation time tCPU is relatively consistent. This tends to be a great benefit of
employing a convex solver, and it is particularly useful if this algorithm needs to be customised and
tuned for an embedded application with constraints on computation time.

Figure 2: Feasibility of the extracted trajectory of qs for (left to right) i = 6, 7, 8.

ESA GNC-ICATT 2023 – A. Popov 13

Figure 2 illustrates three intermediate solutions for qs, the scalar component of the quaternion qR. The
top row compares the Hermite state solution with local propagation of the state trajectory using the
nonlinear dynamics, as shown in (10), and the bottom row compares the gradient of the Hermite state
solution with the evaluation of the nonlinear dynamics along the solution. This is equivalent to the
comparison presented in (18). The figure shows this data for i = 6, 7, 8, thus providing an effective
illustration of the variable-resolution framework.

To observe the effects of mesh refinement, we can consider just the bottom row of plots: the in-
accuracy evident in the leftmost figure justifies adding points over the entire mesh, and the middle
plot exhibits the resulting improvement in the integrated error measure. However, there remains a
visible mismatch between the two curves, particularly within the first mesh interval. Hence only this
interval is refined now, resulting in a more accurate non-uniform mesh at the next iteration. We now
complement these remarks by considering the top row of plots, illustrating the error derived from
solving the local IVP (9) in each mesh interval. The clear improvement over the three plots is a result
of the Jacobian linearisation (2) yielding a more representative convex approximation of (1). This
follows the gradual progression of the SCP procedure, since the assumed reference solution continues
to converge towards some unique pair of state and control trajectories. With each new iteration, this
converging behaviour shrinks the region over which the Taylor approximation must extend, hence
reducing the deviation from the nonlinear dynamics of the system. It should be emphasised that the
simultaneous refining of the mesh does also promote faster convergence, as is evident from the sub-
stantial decrease in ζρ and ζδ for the iterations shown in the figure. However, the two errors ζδ and
ζλ remain subtly different metrics: ζδ measures the accuracy of the discrete-time linearised dynam-
ics (7) as an approximate model of the continuous-time system, whereas ζλ measures how well the
polynomial interpolant (14) can represent the nonlinear dynamics between mesh nodes.

6 CONCLUSION

We have summarised some generic concepts of sequential convex programming, based on which we
have motivated the use of Hermite polynomial basis functions to directly interpolate the finite set of
state solution points found by the convex solver. In particular, this has been justified for applications
where exact satisfaction of the terminal state conditions is imperative. By employing two different
error measures to assess feasibility of the solution, it may be possible to terminate the SCP algo-
rithm with a weaker condition on the convergence of the sequence of solutions. This strategy can
be particularly effective if the original control constraints can be tightened such that the interpolated
state trajectory can be followed with a perturbed control trajectory. We have subsequently described
a generic implementation of mesh refinement with SCP, enabling a guaranteed level of accuracy in
the solution while avoiding introducing an excessive number of optimisation variables into the tran-
scribed convex problem. Finally, we have demonstrated some attractive features of this framework
using the case study of optimal descent guidance for a lunar lander.

REFERENCES

[1] D. Malyuta, T. P. Reynolds, M. Szmuk, et al., “Convex optimization for trajectory generation: A
tutorial on generating dynamically feasible trajectories reliably and efficiently,” IEEE Control
Systems Magazine, vol. 42, no. 5, pp. 40–113, 2022.

[2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

ESA GNC-ICATT 2023 – A. Popov 14

[3] Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive convexification of non-convex optimal con-
trol problems and its convergence properties,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), 2016, pp. 3636–3641.

[4] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guaranteed sequential trajec-
tory optimization via sequential convex programming,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 6741–6747.

[5] D. Malyuta, Y. Yu, P. Elango, and B. Açıkmeşe, “Advances in trajectory optimization for space
vehicle control,” Annual Reviews in Control, vol. 52, pp. 282–315, 2021.

[6] K. G. Murty and S. N. Kabadi, “Some NP-complete problems in quadratic and nonlinear pro-
gramming,” Mathematical Programming, vol. 39, pp. 117–129, 1987.

[7] S. A. Vavasis, “Quadratic programming is NP,” Information Processing Letters, vol. 36, pp. 73–
77, 1990.

[8] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Methods in Convex Programming.
Society for Industrial and Applied Mathematics, 1994.

[9] B. Açikmeşe and L. Blackmore, “Lossless convexification of a class of optimal control prob-
lems with non-convex control constraints,” Automatica, vol. 47, pp. 341–347, 2011.

[10] B. Açikmeşe, J. M. Carson, and L. Blackmore, “Lossless convexification of non-convex control
bound and pointing constraints of the soft landing optimal control problem,” IEEE Transactions
on Control Systems Technology, vol. 21, pp. 2104–2113, 2013.

[11] M. Szmuk and B. Açikmeşe, “Successive convexification for 6-DoF Mars rocket powered land-
ing with free-final-time,” in 2018 AIAA Guidance, Navigation, and Control Conference, Amer-
ican Institute of Aeronautics and Astronautics, 2018.

[12] R. Bonalli, T. Lew, and M. Pavone, “Analysis of theoretical and numerical properties of se-
quential convex programming for continuous-time optimal control,” IEEE Transactions on Au-
tomatic Control, pp. 1–16, 2022.

[13] J. Hespanha, Linear Systems Theory. Princeton Press, 2018.

[14] D. Malyuta, T. P. Reynolds, M. Szmuk, M. Mesbahi, B. Açikmeşe, and J. M. Carson, “Dis-
cretization performance and accuracy analysis for the powered descent guidance problem,” in
AIAA SciTech Forum, 2019.

[15] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, and G. T. Huntington, “A
unified framework for the numerical solution of optimal control problems using pseudospectral
methods,” Automatica, vol. 46, no. 11, pp. 1843–1851, 2010.

[16] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control: Theory, Computation,
and Design, 2nd ed. Nob Hill Publishing, 2019.

[17] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.

[18] E. Kerrigan, “Robust constraint satisfaction: Invariant sets and predictive control,” Ph.D. dis-
sertation, University of Cambridge, 2000.

[19] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming. Society for Industrial and Applied Mathematics, 2010.

[20] S. Jain and P. Tsiotras, “Trajectory optimization using multiresolution techniques,” Journal of
Guidance, Control, and Dynamics, vol. 31, no. 5, pp. 1424–1436, 2008.

[21] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded systems,” in 2013
European Control Conference (ECC), 2013, pp. 3071–3076.

ESA GNC-ICATT 2023 – A. Popov 15

	Introduction
	Preliminaries
	Trajectory Optimisation
	Sequential Convex Programming
	Transcribing the Convex Problem

	Representing the Continuous-Time Solution
	Stopping Criteria for SCP
	Solving an IVP for the State Trajectory
	Hermite Interpolation of the Discrete State Solution
	Measuring Error in the Hermite Interpolation Scheme

	Variable-Resolution Sequential Convex Programming
	Example: 6-DoF Lunar Lander
	Description of the Dynamical System
	Problem Formulation
	Numerical Results

	Conclusion

