

# Investigating the use of blockchain to increase trust, security and transparency of our software supply chains

Guillaume Haben

22/09/2025

ESA UNCLASSIFIED – For ESA Official Use Only



## **Outline**



## 1. Blockchain overview

What is Blockchain

How does it work

Blockchain properties

### 2. Context

ESA Agenda

Space projects

Challenges in PA

## 3. Applications

Software PA use case

Other applications

Ongoing ESA Activities



## Blockchain overview

## What is Blockchain?



## **Definition**

Blockchain is a technology, a **decentralized digital ledger** that **securely stores records** across a **network** of computers in a way that is **transparent**, **immutable**, and **resistant to tampering**. Each "block" contains data are linked in a chronological "chain".

## **Types of blockchain**

|           | Public / Permissionless                   | Private / Permissioned                  |  |
|-----------|-------------------------------------------|-----------------------------------------|--|
| Examples  | Bitcoin, Ethereum                         | Hyperledger Fabric, Corda, Quorum       |  |
| Туре      | Trustless, nodes are anonymous            | Trusted, nodes identities are certified |  |
| Consensus | Reached via proof of work, proof of stake | Governance set by policies / rules      |  |

## How does Blockchain work?





### 2 Validation

The request is broadcasted to a P2P network of nodes, validated (or not) through consensus decision



## 1 Transaction request

Someone request to register a new transaction: contracts, records or any other information



### 3 Block creation

Sets of validated transactions are stored in a block of data



## 5 Ledger is updated

Every nodes host a copy of the ledger storing all transactions





## 4 Addition to the blockchain

The new block is then added to the existing blockchain, in a permanent and unalterable way

## **Blockchain properties**



#### **Decentralized**

A blockchain network is not controlled by a single entity. Data and operations are distributed across a network of peers

#### **Distributed**

Each node holds a copy of the shared ledger, providing redundancy and making the system more robust

#### **Secure**

Transactions and linked blocks are secured using cryptography and hashing algorithms

#### **Immutable**

Once data is happened to the blockchain, it is not possible to alter it. History of transactions is preserved

## **Transparent**

Each node can access and verify the ledger of transactions increasing accountability and resistance to fraud

#### Consensus

Nodes follow a set of rules to agree on the validity of each new transaction to be added to the blockchain

#### **Smart Contracts**

Many blockchain supports self-executing programs based on certain conditions and agreed terms



## Context

## **ESA Agenda**



AGENCY

## ESA Strategy 2040

## **Digital Revolution for Space**

A coherent, interoperable digital thread facilitates formal traceability, analysis, data exchange and round-trip engineering across disciplines, lifecycle phases and supply chains.

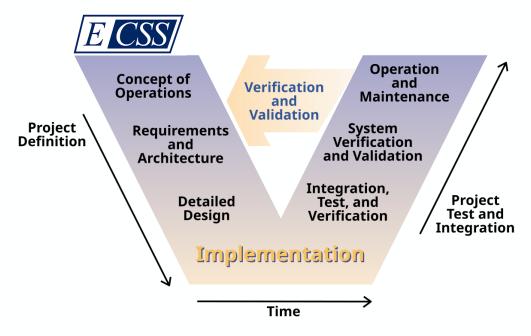
## **Security for Space Systems**

Security protection mechanisms adapted to a dynamic environment of novel mission concepts and services, more complex space system architecture and evolving threat scenarios

## More for Less: Technologies for Cost Reduction

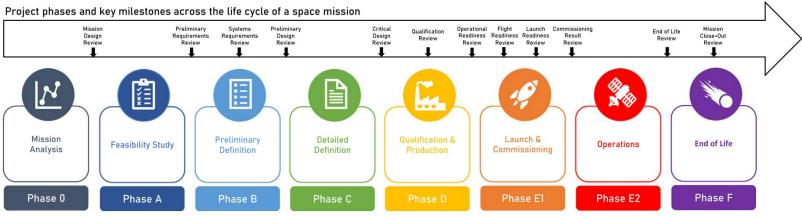
Towards more capable virtual models, standardisation and automated series production to lower development, production and testing costs




Digital continuity (document to model-based)
Single point of truth (increasing communication)
Traceability (change impact analysis)
Interoperability (across disciplines)



Continuous improvements
Adaptability & Flexibility
Increased transparency
Enhanced collaborations


## **Space Project Lifecycle**





#### **Current workflows**

- Customers organize joint reviews with their suppliers throughout each project to assess their work
- Reviews (only) happen at major milestones in the project



## **Review Challenges**



## As PA supporting projects, we participate to joint reviews with suppliers



#### Time constraints

Reviews are often short-timed, happening in parallel, giving little room for meticulous and complete analysis of work packages



#### Collaboration

Actors of a project are numerous. Trust is difficult to build. The culture is more in favor of sharing less than too much, and not in a continuous way



#### **Inconsistencies**

Data packs are often missing, incomplete. Information can be altered or lost over time



## Large data packs

Data packs are often large containing many documents, requiring strong focus abilities to switch between projects



#### Lack of standardization

Data comes in non-ideal export format (pdf, excel), requiring tedious and manual analysis, preventing the digitalization of the review process



## Long supply chains

Rigorous follow-up of all suppliers is challenging, opening doors to security issues and wrong reuse of building blocks



# Applications

## **PABLO - Aims**





stands for Product Assurance based on **BLO**ckchain. Available as a **dashboard** built on top of **blockchain** 

## Similar objectives and properties



## Digitalization of SW PA activities

Dashboards based on a single source of truth help quickly visualize the flow of information securely stored on the blockchain



## **Continuous monitoring**

Shifting from static and intermittent project reviews to continuous monitoring. Updates can be followed in real-time.



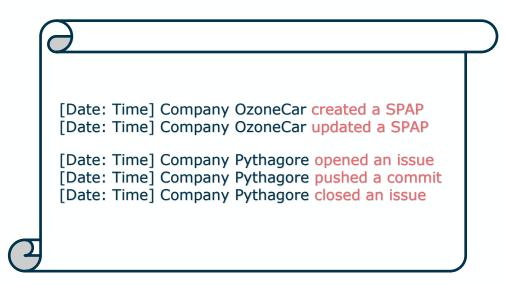
#### **Better assurance**

Increasing the reliability of shared information, enabling better traceability & auditability during project lifecycle



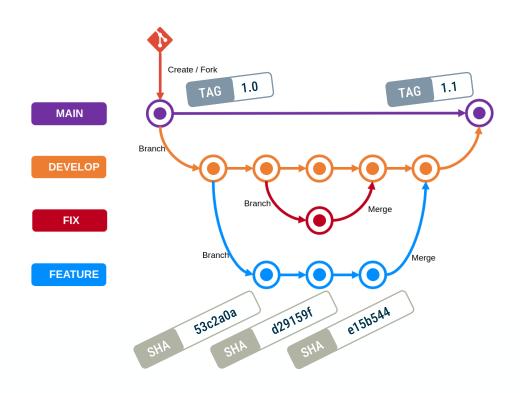
#### **Automation**

Removing manual, repetitive and timeconsuming work to let us focus on what really matters


## PABLO - The SW PA Use Case



## What is stored on the Blockchain?


## Properties such as:

Date, Time, Company name, Author details, Artefact type, ID (hash), artefact content (optional)



Example of information stored on the shared ledger

## **Continuous Development Traceability**



Actions set up in CI/CD trigger smart contracts!

## **PABLO - Future Applications**



PA / Project / Configuration Management, Domain specific (e.g. RAMS, system engineering)

Similar to handling software PA-related artefacts, we could support other disciplines, processes & their artefacts

## Supply chain management

From sources to distribution, traceability helps organizations understand their supply chain & helps prevent supply chain attacks, ensuring what was done, when and by who

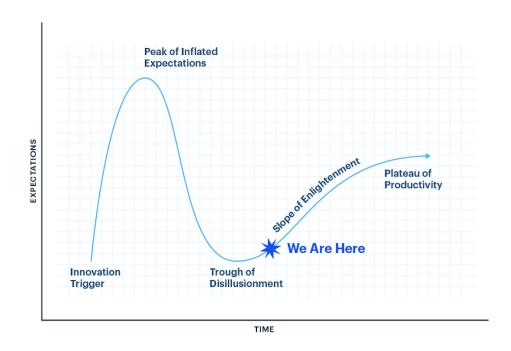
## Auditability and Assessment

Increased visibility over one supplier projects could facilitates audits and assessment (S4S)

#### Procurement

Blockchain could help digitize procurement processes, reducing time-to-contract while maintaining security and trust

• ...




# Wrapping up

## **Blockchain status in 2025**



## **Gartner's Hype Cycle**



## Legal regulations coming into place

EU MICA, NIS2 directive, Cyber Resilience Act, Al Act, Data Act...

## **Blockchain technology & community growing**

HyperLedger Fabric v2, Ethereum Virtual Machines...

## Industry adopting the technology

Decentralized finance, food and transportation, railway...

### **Clouded maturation**

The new Gen Al hype hides recent progress, but it's there!

## **Feedback**



## **Building a Blockchain Project**

Points to consider



## **Technical challenges**

Require coordination, efforts to setup the blockchain



## **Adoption challenges**

Early stakeholders onboarding is key
Must be business-driven

## **Key Take Away**





## **Blockchain technology properties**

Decentralized, secure, immutable, transparent, programmable



## **Investigating applications**

Software PA, development, supply chain & more...



## **Digital transformation**

ESA Strategy 2040 aims at reducing costs & time



## Let's collaborate!

Discussing pros and cons, use cases...



# Thank you!



## Back Up Slides

## Other Blockchain Use Cases at ESA



| Application       | Objective                                                                      | Programme                                 | Deliverable                           |
|-------------------|--------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|
| Science           | Ensuring reproducibility of scientific research                                | YGT                                       | Proof-of-Concept                      |
| Science           | Synergic use of blockchain and deep learning for space data                    |                                           | Feasibility study                     |
| Operations        | Implementation of blockchain in ground segment operations                      | Estonian industry incentive scheme        | Use case analysis                     |
| Operations        | Advanced trust establishing methods in next generation spacecraft networks     | NPI                                       | Academic research                     |
| Telecom           | Risk mitigation of farmland based on EO imagery                                | Business applications Kick Start Activity | Feasibility study                     |
| Telecom           | Humanitarian goods supply chain                                                | Business applications Kick Start Activity | Feasibility study                     |
| Telecom           | Food safety and traceability supply chain                                      | Business applications Kick Start Activity | Feasibility study                     |
| Telecom           | Added value of blockchain on the spacecraft in satellite networks              |                                           | Feasibility studies + demonstrator    |
| Earth Observation | Blockchain 4 Space Activities: Integrity of EO data                            | GSTP                                      | Feasibility study + use case analysis |
| Earth Observation | Identification of blockchain use cases in EO                                   | Phi Week                                  | Use case analysis                     |
| Commercialization | Blockchain for secure nano-satellite constellations with distributed authority | SME initiative                            | Feasibility study                     |
| Generic           | End to end supply chain protection                                             | GSTP                                      | Prototype                             |