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ABSTRACT

In this paper, a comprehensive methodology is presented for modeling an on-orbit servicing
(OOS) mission scenario and designing a gain-scheduled feedback control system that can robustly
meet performance requirements. This methodology accounts for uncertainties in the model, as
well as significant changes in inertia and flexibility throughout the mission scenario. To capture
the dynamics and interactions of all subsystems in the OOS scenario, a single linear fractional
representation (LFR) was developed for the uncertain plant, taking into account the varying ge-
ometrical configuration of a robotic arm, flexible appendages and sloshing dynamics. The con-
troller design considers the interactions between subsystems and uncertainties, as well as the
time-varying and coupled flexible dynamics. Finally, the paper evaluates the robust stability and
worst-case performances of the closed-loop system using a structured singular value analysis.

1 INTRODUCTION

On-orbit servicing (OOS) technology refers to the use of spacecraft or robots to service, repair or
upgrade satellites while they are still in orbit. This technology has the potential to extend the lifespan
of satellites by allowing them to be serviced and repaired instead of being immediately replaced once
they malfunction or run out of fuel [1]. However, this technology is complex and challenging in many
ways. Numerous studies have investigated the issue of spacecraft rendezvous and assembly with
disturbance rejection, using various strategies. Liu et al. [2] developed a sampled-data approach to
optimize actions against disturbance and limited measurements in a rendezvous problem between two
spacecraft, while other researchers proposed controls such as adaptive active disturbance rejection
control and higher-order sliding mode control to address uncertainty in disturbance torques during
spacecraft rendezvous [3, 4]. Some studies have presented a Guidance, Navigation and Control (GNC)
framework for rendezvous/docking [5], while Chai et al. [6] introduced a robust attitude control for
on-orbit assembly to manage the attitude of a substructure under disturbance. However, most of these
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studies have assumed the system to be a rigid body, disregarding any potential flexibility. Rodrigues
et al. [7] proposed a comprehensive approach for modeling an on-orbit servicing mission scenario.
Nevertheless, the model did not account for fuel sloshing. Furthermore, the controller design did not
fully exploit the time-varying behavior of the inherent dynamics.
From an Attitude and Orbit Control System (AOCS)/GNC perspective, OOS missions are particularly
demanding due to the time-varying and coupled flexible dynamics of the system. Due to these chal-
lenges, the success of on-orbit servicing missions is constrained by the ability to accurately model the
system and use advanced analysis tools to predict worst-case scenarios during a preliminary design
phase. This is critical as it helps ensure that the control system and other mission critical compo-
nents are able to handle the unique and complex dynamics of the system and that any potential issues
are identified and addressed before the mission is undertaken. When modeling spacecraft dynam-
ics, it is crucial to consider the effects of flexible components, such as solar panels, and vibrational
components, like fuel slosh. These can have a significant impact on the spacecraft’s behavior. In
the context of an OOS mission, the movement of fuel within the tank, known as fuel sloshing, can
have an even more pronounced effect on the spacecraft’s attitude and pointing. A lumped mechanical
multi-mode model that subdivides the fuel in several particles is proposed in [8] and considered in
this paper. Since these missions are to take place in microgravity conditions, it is assumed that the
fuel is distributed around the inner walls of the fuel tanks, leaving an empty sphere at the center.
The Two-Input Two-Output Ports (TITOP) approach [9] was used to build a Linear Parameter-Varying
(LPV) model of two complex multibody mechanical systems, while keeping the uncertain nature of
the plant and condensing all possible mechanical configurations in a single low order linear fractional
representation (LFR). This framework is a multi-body approach which can connect multiple flexible
sub-structures through dynamic ports [10, 11]. It considers uncertain parameters and all possible con-
figurations (changes in mechanical properties, changes in geometric configurations like the rotation
angle of a solar array, changes in reaction wheel speed, etc.) in a single LFR. After being constructed
using the TITOP approach, the models are prepared for robust control synthesis, along with robust
stability and performance evaluation. These models have been implemented in the latest version of
the Satellite Dynamics Toolbox Library (SDTlib) [12], which enables users to easily build a model of
a flexible spacecraft.
In this context, this paper presents a comprehensive approach for planning and designing an on-orbit
servicing mission scenario from an end-to-end perspective, taking into account the structure and con-
trol aspects. The authors aim to consider the challenges of flexibility, system uncertainty, sloshing
dynamics and time-varying dynamics in the design of a robust controller for an orbital servicing op-
eration. As on-orbit operations of large and flexible structures become more common in future space
missions, this approach is increasingly relevant for ensuring the success of these kinds of scenarios.

2 MULTIBODY MODELING APPROACH

2.1 The TITOP approach

The link Li connected to the parent substructure Li−1 at the point Pi and to the child substructure
Li+1 at the point Ci is depicted in Fig. 1a. The double-port or TITOP model

[
TLi

Pi,Ci

]
Ri

is a linear
dynamic model between 12 inputs:

• the six components in Ri = (P 0
i ;xi, yi, zi) of the wrench

[
WLi+1/Li,Ci

]
Ri

=

[
FLi+1/Li,Ci

TLi+1/Li,Ci

]
Ri

applied by the substructure Li+1 to the link Li at the point Ci: FLi+1/Li,Ci
stands for the three-

component force vector applied by Li+1 to Li and TLi+1/Li,Ci
stands for the three-component
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torque vector applied at the point Ci.

• the six components in Ri of the acceleration twist [ẍPi
]Ri

=

[
aPi

ω̇Pi

]
Ri

of point Pi: aPi
stands

for the three-component linear acceleration vector at the point Pi and ω̇Pi
stands for the three-

component angular acceleration vector at the point Pi.

and 12 outputs:

• the six components in Ri of the acceleration twist [ẍCi
]Ri

=

[
aCi

ω̇Ci

]
Ri

.

• the six components in Ri of the wrench
[
WLi/Li−1,Pi

]
Ri

=

[
FLi/Li−1,Pi

TLi/Li−1,Pi

]
Ri

that is applied

by the link Li to the substructure Li−1 at the point Pi.

and can be represented by the block-diagram depicted in Fig. 1b. The TITOP model displayed in Fig.
1 is composed of the direct dynamic model (transfer from acceleration twist to wrench) at the point
Pi and the inverse dynamic model (transfer from wrench to acceleration twist) at the point Ci.

xi

zi

yi

Li−1

Li+1
Li

Pi

Ci

[WLi/Li−1,Pi
]
R

[WLi+1/Li,Ci
]
Ri

[ẍPi
]
Ri

[ẍCi
]
Ri

Undeformed appendage at equilibrium

[

T
Li

Pi,Ci

]

Ri

[ẍCi
]
Ri

[ẍPi
]
Ri

[WLi/Li−1,Pi
]
Ri

[WLi+1/Li,Ci
]
Ri

(a) (b)

Figure 1: (a) i-th flexible appendage of a complex sub-structured body. (b) TITOP model
[
TLi

Pi,Ci

]
Ri

block-diagram.

2.2 System modeling

For the on-orbit servicing mission scenario being studied in this paper, two different spacecraft are
considered, the chaser and the target, which can be observed in Fig. 2. The chaser is composed of
a rigid hub, two symmetric flexible solar arrays, one robotic arm and six fuel particles. The target
vehicle consists of a rigid hub, two flexible solar arrays and six fuel particles. The scenario chosen
to demonstrate the capabilities of the proposed approach is the target manipulation phase. The latter
consists of the chaser manipulating the target with a robotic arm with the objective of performing
maintenance or to use it as a mission extension pod. This is just one example scenario and the same
approach can be applied to explore a multitude of other mission concepts. For a better understanding
of the mission scenario being studied, Fig. 3 depicts three different instants of the coupled system
during the whole final rendezvous phase.
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Figure 2: Chaser and target spacecraft composed of two rigid hubs, four solar arrays, one robotic arm
and twelve fuel particles (Note: for the sake of simplicity, the x-axes are displayed in solid red lines,
the y-axes in dashed green lines and the z-axes in dash-dotted blue lines).

Figure 3: Three different instants of the coupled system during the OOS mission scenario being
studied: 1⃝, 2⃝ and 3⃝ the robotic arm is docked to the target spacecraft and it is bringing it closer to
the chaser’s rigid hub.

2.2.1 N-port model of a rigid body

Let us consider a general rigid body B with center of mass G. Considering that the rigid body is sub-
mitted to external forces/moments Fext/B,G,Text/B,G (i.e. solar radiation pressure, gravity gradient,
atmospheric drag, magnetic fields, etc.) and to forces/moments FB/A,P ,TB/A,P due to interactions
with an appendage A connected at the point P , the linearized Newton-Euler equations read:[

Fext/B,G − FB/A,G

Text/B,G −TB/A,G

]
︸ ︷︷ ︸

Wext/B,G−WB/A,G

= DB
G

[
aG

ω̇G

]
︸ ︷︷ ︸

ẍG

with DB
G =

[
mBI3 03×3

03×3 JB
G

]
(1)

where DB
G is the static direct dynamic model of B at the body’s center of mass G and aG is the linear
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acceleration vector of B at G. Furthermore, mB is the mass of B and JB
G represents the inertia tensor

of B written in the body frame of the rigid body RB = (G;xG, yG, zG). The mathematical relation
between the wrenches WB/A,G, WB/A,P and the acceleration twists ẍG, ẍP is given by:[

FB/A,G

TB/A,G

]
︸ ︷︷ ︸

WB/A,G

= τT
PG

[
FB/A,P

TB/A,P

]
︸ ︷︷ ︸

WB/A,P

and
[

aP

ω̇P

]
︸ ︷︷ ︸

ẍP

= τ PG

[
aG

ω̇G

]
︸ ︷︷ ︸

ẍG

(2)

where τ PG describes the rigid kinematic model between the degrees of freedom (DOF) of point P
and the DOF of point G. It is given by:

τ PG =

[
I3 (∗rPG)

03×3 I3

]
with (∗rPG) =

 0 −z y
z 0 −x
−y x 0

 and rPG =

 x
y
z

 (3)

From Eqs. (1) and (2), the TITOP model of a rigid body B connected to n appendages can directly be
obtained: 

ẍP1

ẍP2

...
ẍPn

ẍG

 =


τ P1G

τ P2G
...

τ PnG

I6


[
DB

G

]−1 [
τT
P1G

τT
P2G

· · · τT
PnG

I6
]

︸ ︷︷ ︸[
D̃B
P1...PnG

]−1


WA1/B,P1

WA2/B,P2

...
WAn/B,Pn

Wext/B,G

 (4)

where
[
D̃B

P1...PnG

]−1

is the multi-port inverse linearized dynamic model of the rigid body B computed
at the points P1, . . . , Pn, G in the body frame RB. This model can also be computed when one of the
ports is inverted (transfer from acceleration twist to wrench). In that case:

D̃B
P1...PnG =


τT
GP1

[
−DB

GτGP1 τT
P2G

· · · τT
PnG

I6
]

τ P2G
...

τ PnG

I6

 [
τGP1 06×6 · · · 06×6 06×6

]
 (5)

where D̃B
P1...PnG represents the multi-port direct/inverse linearized dynamic model of the rigid body B:

inverse linearized dynamic model computed at the points P2, . . . , Pn, G and linearized direct dynamic
model (with a minus sign) computed at the point P1 in the body frame RB. One of the objectives of
this paper is to demonstrate how to design a controller in the presence of significant model uncertainty.
As an example, let us now consider the mass of the rigid body mB uncertain, with mB = mB0(1 +
rmBδmB). In this case, mB0 is the body’s nominal mass, rmB is used to set the maximum percent of
variation for the body’s mass and δmB ∈ [−1, 1] is a normalized real uncertainty, which appears three
times in the minimal LFR of a rigid body [12]. Therefore, the uncertainty block regarding the mass
of B is equal to ∆mB = δmBI3.

2.2.2 Model of a general flexible appendage

A general flexible appendage A connected to a parent rigid body B at the point P is considered.
The effective mass model of the appendage −MA

P (s) establishes a connection between the six DOF
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acceleration vector of point P and the six DOF forces/moments vector applied by the appendage A
to the parent body at the point P : η̇

η̈
WA/B,P

 =

 0N×N IN 0N×6

− diag
(
ω2
iA

)
− diag (2ζiAωiA) −LA

P

−LA
P
T
diag

(
ω2
iA

)
−LA

P
T
diag (2ζiAωiA) DA

P0


︸ ︷︷ ︸

−MA
P (s)

 η
η̇
ẍP

 (6)

where ωiA , ξiA and lAi,P are the natural frequency, the damping ratio and the 6 DOF participation factor
vector of the i-th flexible mode of the appendage A, LA

P =
[
lA1,P , . . . , l

A
i,P , . . . , l

A
N,P

]
is the matrix of

modal participation factors of the N flexible modes of the appendage at the point P , DA
P0

= DA
P −

ΣN
i=1M

A
i,P = DA

P − LA
PL

A
P
T is the 6-by-6 residual mass/inertia of the appendage rigidly cantilevered

to the parent body B at the point P , MA
i,P = lAi,P l

A
i,P

T is the 6-by-6 effective mass/inertia matrix of the
i-th flexible mode of the appendage and s is the Laplace variable. The static model of the appendage
DA

P computed at the attachment point P is given by:

DA
P = τT

AP

[
mAI3 03×3

03×3 JA
A

]
τAP (7)

where mA is the mass of A and JA
A represents the inertia tensor of A written in the appendage’s body

frame RA = (P ;xP , yP , zP ) and expressed at its center of mass A.

2.2.3 Connection model between two different bodies

The inverse dynamic model of a rigid body described in Eq. (4) is expressed in the body frame
RB = (G;xG, yG, zG). On the other hand, the model of a general flexible appendage represented
in Eq. (6) is expressed in the appendage frame RA = (P ;xP , yP , zP ). A Direct Cosine Matrix
(DCM) TRB/RA is thus needed to connect the two models. TRB/RA is nothing else than the matrix of
components of the unitary vectors xP , yP , zP expressed in RB. The DCM TRB/RA has a constant value
if the appendage is fixed in a certain angular orientation with respect to the rigid body B. However,
if the appendage rotates around a certain direction vector v, the required transformation matrix has to
be parameterized according to the time-varying rotation angle α. In this case, the rotation matrix will
be represented as Tα. If the unit vectors zP and zG are aligned and the appendage A rotates around
v ≡ zP ≡ zG, Tα can be written as follows:

Tα =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (8)

An LFT parameterization of the rotation matrix described in Eq. (8) is implemented as demonstrated
by Guy et al. [13], with τα = tan(α/4) and τα ∈ [−1, 1]. The complete block-diagram model of the
connection between a rigid body B and an appendage A is displayed in Fig. 4a. The transformation
model Rα can be observed in Fig. 4b.

2.2.4 Sloshing model

The behaviour of fluid within a spherical tank is investigated by dividing the fuel in several particles.
Each particle is connected to three sets of springs and dampers, each set oriented along one of the
three mutually perpendicular axes in three-dimensional space (x, y and z directions), as follows:
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[

D̃
B

PG

]

−1

RB

Rα

[

−MA
P (s)

]

RA

[

WA/B,P

]

RB

[

Wext/B,G

]

RB

[

WA/B,P

]

RA

[ẍP ]RB

[ẍG]RB

[ẍP ]RA

[

Tα 03×3

03×3 Tα

]T

[

Tα 03×3

03×3 Tα

]

[ẍP ]RB
[ẍP ]RA

[

WA/B,P

]

RA

[

WA/B,P

]

RB

Rα

ταI16

(a) (b)

ταI8

ταI8

Figure 4: (a) Block-diagram model of the connection between a rigid body B and an appendage A.
(b) Assembly of the transformation model Rα.

{
mSI3 (aC + δr̈S) = −kSI3δrS − cSI3δṙS

FS/B,C = kSI3δrS + cSI3δṙS
(9)

In Eq. (9), mS , kS and cS are the mass of the fuel particle, the springs stiffness and the springs damp-
ing coefficient, respectively. Furthermore, δrS =

[
δxS δyS δzS

]T represents the displacement
or change in position of the fuel particle from its equilibrium position in the 3 different directions.
This model shows that a horizontal or lateral motion of the spacecraft body B causes the liquid to
slosh (i.e., causes the sprung mass of the model to oscillate relative to the body). Fig. 5a shows the
block-diagram of the lateral sloshing model NS

C(s) described in Eq. (9). This model is written in the
inherit body frame, meaning that RS ≡ RB. Furthermore, Fig. 5b illustrates a scenario where a fuel
particle is situated in a massless spherical tank, which in turn is enclosed within a rigid spacecraft B.
In this situation, it is considered that the particle only moves along the x-axis, and it is possible to see
what happens when the sloshing mass moves around its equilibrium position located at the point C.

kSI3
1

s
1

s

ẍCWS/B,C

NS

C(s) −

−

+

+

δr̈SδṙSδrS

ω̇C

aC

cSI3

1

mS
I3

TS/B,C

FS/B,C

x− axes

y − axes

C

B

kS

S

C

WS/B,C

ẍC

cS

mS

δxS

δxS �= 0

δxS = 0

(a) (b)

Figure 5: (a) Block-diagram of the lateral sloshing model. (b) Illustration of a scenario where a fuel
particle is situated in a massless spherical tank, which in turn is enclosed within a rigid spacecraft B.
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2.2.5 Complete model of the system

A global LFR representation is obtained, minimal in terms of mechanical parameter occurrences. This
model fully captures the dynamics and interactions between all the subsystems of the OOS scenario
being studied: robotic arm, flexible appendages and sloshing dynamics. Furthermore, it also takes into
account the various uncertainty effects in a very compact representation. Fig. 6 illustrates the internal
structure of the overall LFR model as well as the interconnections between the several subsystems. In
this representation, all the block uncertainties are isolated at the component level.

[

D̃
B1

J0P1P2C1...C6G

]

−1

RB1

RRB1
/RA1

[

WA1/B1,P1

]

RA1

[ẍP1
]
RB1

[ẍP1
]
RA1

[

WA1/B1,P1

]

RB1

RRB1
/RA2

[

WA2/B1,P2

]

RA2

[ẍP2
]
RB1

[ẍP2
]
RA2

[

WA2/B1,P2

]

RB1

[

WS1/B1,C1

]

RB1

[ẍC1
]
RB1

R

∆R

[ẍJ0
]
RB1

[

WL0/B1,J0

]

RB1

[ẍG]RB1

[

Wext/B1,G

]

RB1

[

WS6/B1,C6

]

RB1

[ẍC6
]
RB1

[

D̃
B2

P3P4C6...C12J7

]

RB2

[

−M
A3

P3
(s)

]

RA3

RRB2
/RA3

[

WA3/B2,P3

]

RA3

[ẍP3
]
RB2

[ẍP3
]
RA3

[

WA3/B2,P3

]

RB2

RRB2
/RA4

[ẍP4
]
RB2

[ẍP4
]
RA4

[

WA4/B2,P4

]

RB2

[

WS7/B2,C7

]

RB2

[ẍC7
]
RB2

∆ω3

[

WS12/B2,C12

]

RB2

[ẍC12
]
RB2

[

N
S12

C12
(s)

]

RB2

∆m12

[

WB2/L6,J7

]

RL6

[ẍJ7
]
RL6

[

WA4/B2,P4

]

RA4

Target spacecraft: 1 rigid hub + 2 solar arrays + 6 fuel particles

Chaser spacecraft: 1 rigid hub + 2 solar arrays
+ 1 robotic arm + 6 fuel particles

[

N
S7

C7
(s)

]

RB2

∆m7

[

N
S6

C6
(s)

]

RB1

∆m6

[

N
S1

C1
(s)

]

RB1

∆m1

[

−M
A4

P4
(s)

]

RA4

∆ω4

[

−M
A1

P1
(s)

]

RA1

∆ω1

[

−M
A2

P2
(s)

]

RA2

∆ω2

Figure 6: Block-diagram of the uncertain plant written in LFR form.

The notation used in Fig. 6 is defined according to Fig. 2 and all the different dynamic models
computed before. The presented approach considers the fuel in each spacecraft to be divided in 6
particles placed symmetrically around the surface of the tanks, as depicted in Fig. 2. Relative un-
certainty is taken into account on the mass of the particles mS• , where ∆m• = δmS•

I3, and on the
natural frequencies of all the solar arrays’ first flexible modes ω1A•

, with ∆ω• = δω1A•
I2. Further-

more, ∆mod = diag (∆ω1 ,∆ω2 ,∆ω3 ,∆ω4) and ∆slosh = diag (∆m1 ,∆m2 , . . . ,∆m11 ,∆m12). The
chaser spacecraft also uses a robotic arm R for manipulating the target on-orbit. This arm manipula-
tor, which is composed of 7 links and 6 joints, is exactly the one used in [7], where α• represents the
arm’s angular configuration. The uncertainty block describing the changing geometrical configura-
tion of the robotic arm is given by ∆R = diag (∆α1 ,∆α2 ,∆α3 ,∆α4 ,∆α5 ,∆α6), with ∆α• = τα•I16
and τα• ∈ [−1, 1]. Fifth-order polynomials are generated for the trajectories of the robotic arm joint
angles. These trajectories are defined in terms of τα• , with τα• = a•+b•t+c•t

2+d•t
3+e•t

4+f•t
5 =

a• + t (b• + t (c• + t (d• + t (e• + tf•)))). The coefficients of the polynomials that were obtained for
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τα• result in 400 occurrences of the time parameter t. All the numerical values and range of varia-
tions of the numerous system parameters which are employed in this section are described in Table 1.
The reader should refer to [7] for more information about the arm manipulator. Thanks to the latest
SDTlib [12] release, it is possible to assemble the complete system displayed in Fig. 6 in a Simulink
environment. Utilizing the SDTlib offers the possibility of declaring the parameters in each subsys-
tem as uncertain. A minimal LFT can then be obtained, enabling direct use in linear robust controller
synthesis and assessment of robust stability and performance.

2.3 Analysis of the system dynamics

By setting the varying parameters α• accordingly, the singular values of the system shown in Fig.
6 are analyzed at the three different instants depicted in Fig. 3. Initially, the transfer function be-
tween Text/B1,G1{2} and ω̇G1{2} is examined for the nominal system (Text/B1,G1{2} → ω̇G1{2}
channel). According to the modal participation factor matrices LA•

P•
definition [13], the plot depicted

in Fig. 7 is consistent with the properties of both spacecraft’s flexible elements. The corresponding
antiresonances occur at the frequencies of the solar arrays’ cantilevered flexible modes (see Table
1). Moreover, it is assumed that the fuel particles in the same spacecraft have the same mass under
nominal conditions. Furthermore, the spring-damper properties kS and cS are also assumed to be the
same in all directions. The antiresonance frequencies regarding the sloshing dynamics are equal to
ωS =

√
kS
mS

, with a corresponding damping ratio of ξS = cS
2mSωS

. Therefore, the chaser’s sloshing
natural frequencies are equal to ωS1−6 = 0.1368 Hz and the target’s sloshing natural frequencies are
equivalent to ωS7−12 = 0.1529 Hz in nominal conditions, as can be observed in Fig. 7. The same
figure also depicts the effect that the subsets of real parametric uncertainty ∆mod and ∆slosh have on
the singular values of the same transfer function.

Figure 7: Gains of the uncertain and nominal systems for the three instants displayed in figure 3
(Text/B1,G1{2} → ω̇G1{2} transfer function).

3 CONTROL ARCHITECTURE AND SYNTHESIS METHODOLOGY

Some of the challenges of an OOS mission scenario include the control structure interactions between
the flexible appendages/sloshing and the AOCS, the time-varying inertial properties, the flexible dy-
namics, the system uncertainties and also the dynamic couplings. Only attitude control design is
addressed, since this paper’s objective is to focus on the target spacecraft manipulation phase.
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3.1 Gain-scheduled H∞ control

In order to design a control law that accommodates the desired performance requirements, the syn-
thesis problem is recast into the nonsmooth H∞ framework [14] by first assembling the weighted
interconnection shown in Fig. 8a. This model is used to design an LPV gain-scheduled controller
[11, 15], where the scheduling variable is the time t. A low order global uncertainty block system
is built in a very straightforward way by just concatenating the individual uncertainty blocks, with
∆P = diag (∆mod,∆slosh). The plant model P is logically the one represented in Fig. 6. How-
ever, only the Text/B1,G1 → ω̇G1 channels are considered, since the objective is to design an attitude
controller. This interconnection is composed of the following blocks:
Sensor and actuator models: First, the star tracker dynamics SST (s) correspond to a first order
low pass filter with a cutoff frequency of 8 Hz. Secondly, the gyroscope dynamics GYRO(s) are
represented by a first order low pass filter with a 200 Hz cutoff frequency. Finally, the reaction wheel
system dynamics RW(s) are approximated by a second order transfer, with a damping ratio equal to
0.7 and a natural frequency of 200 Hz.
Disturbance weights: The measurement noise weights Wn,gyro and Wn,sst are used to define the up-
per bounds on the expected amplitude spectral density (ASD) of the closed-loop noise measurements.
In this case, Wn,gyro = 9.1987×10−4I3 rad2 s−1 and Wn,sst = 1.5343×10−5I3 rad2 s. Similarly, the
purpose of the weight Wn,ext(s) = diag

(
0.002577

2.236s+0.2236
, 0.009685

2.236s+0.2236
, 0.01239

2.236s+0.2236

)
Nm is to model the

upper bound on the expected closed-loop orbital and robotic arm disturbances at different frequencies.
Performance weights: The purpose of the weight Wu = diag (0.8333, 0.8333, 0.8333) N−1m−1

is to impose a desired closed-loop upper bound of 1.2 Nm on the worst-case actuator signals at
different frequencies. Similarly, the objective of the absolute pointing error (APE) requirement Wp =
diag (35.2113, 35.2113, 35.2113) rad−1 is to impose an upper bound of 0.0284 rad on the three
different axes.
Roll-off filter: A 4th-order roll-off Butterworth filter Fro(s) with a cutoff frequency of 0.5 Hz is also
added to the output control signal u, ensuring the controller is not sensitive to high frequency content.
Finally, the structure that was chosen for the adaptable controller K̂(s, t) is:

K̂(s, t) = Fu

([
AK0 BK0

CK0 DK0

]
+ t

[
AK1 BK1

CK1 DK1

]
,
Inc

s

)
= Fl (K(s), tInk

) (10)

with K(s) ⊂ RH(nk+ny)×(nk+nu)
∞ , where RH(nk+ny)×(nk+nu)

∞ represents the set of finite gain transfer
matrices with (nk + ny) outputs and (nk + nu) inputs. Furthermore, nc is the order of the controller,
ny is the number of inputs, nu is the number of outputs, nk is the number of occurrences of the
scheduling parameter t, Fu(·) represents the upper linear fractional transformation and Fl(·) is the
lower linear fractional transformation. The matrices AK0 ,AK1 ,BK0 ,BK1 ,CK0 ,CK1 ,DK0 ,DK1 are
real matrices of appropriate dimensions. The closed-loop model, denoted G(s, t), can be observed in
Fig. 8b. Furthemore, the uncertain closed-loop model is given by Ĝ(s, t,∆P) = Fu (G(s, t),∆P).
The following mixed H∞/H2 problem is solved:

min
K(s)

γ1 s.t. sup
∆P,t

∥∥∥Ĝd̃→et
(s, t,∆P)

∥∥∥
2
≤ γ1 (soft constraint)

subject to
1

γ2
sup
∆P,t

∥∥∥Ĝdu→ẽ(s, t,∆P)
∥∥∥
∞

≤ 1 (hard constraint)
(11)

with ẽ =

[
eu
ep

]
and d̃ =

[
dn,sst

dn,gyro

]
. DK0 is initialized with a static controller tuned to the total

static inertia of the coupled spacecraft at t = 0 s and AK0 , BK0 , CK0 are initialized with zero
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matrices. The resulting controller K̂(s, t) has nc = 4 states, nk = 5 occurrences of the parameter
t and a performance level of γ2 = 0.9946, meaning that the hard constraint has been completely
satisfied. The gains of Fro(s)K̂(s, t) are shown in Fig. 9 for the channels y{5} → uro and for
different values of t ∈ [0, 600]. The three plots exhibit a behavior similar to that of a notch filter.
The described behavior occurs at the natural frequencies ωS for the channels y{5} → uro{1} and
y{5} → uro{3}. For the channel y{5} → uro{2}, this behavior happens around ω1A3,4

.

ep
u

du

dn,sst

dn,gyro

+

+

+

+

+

+

Fro(s)

1

s

1

s

Wn,ext(s)
Wn,gyro

GYRO(s)

SST (s)

Wn,sst

Wp

K(s)

Text/B1,G1

ω̇G1

eu
Wu

control effort

RW(s) P(s)

zPwP ∆P

(a) (b)

ωG1

φG1

tI400
wtP ztP

pointing
performance ̂

P(s)dn,sst

=

dn,gyro

eu
ep

e

du

=

d

u y

G(s, t)
tInkwtK ztK

tInkwtK ztK

zPwP ∆P

tI400
wtP ztP

et

et

uro

K(s)

Figure 8: (a) System architecture used for controller synthesis and worst-case analysis. (b) Equivalent
standard form of the interconnection.

Figure 9: Gains of Fro(s)K̂(s, t) for different values of the scheduling parameter t ∈ [0, 600]
(y{5} → uro transfer functions).

4 PERFORMANCE AND STABILITY ANALYSIS

4.1 Worst-case analysis

The robust stability of the closed-loop interconnection Ĝ(s, t,∆P) is evaluated. This assessment
is done by computing the upper bounds of the function µδ (GwP→zP(jωµ, t)) across a dense grid
of frequencies ωµ and for several different values of the scheduling parameter t ∈ [0, 600]. The
function µδ(G) represents the structured singular value [16] and provides very precise information
about the magnitude of uncertainty which is needed to destabilize the loop at any frequency [15].
This function is equal to 0 if there is no uncertainty ∆ making I − G∆ singular and it is equal
to µδ(G) = 1/min

∆
{σ̄(∆), det(I − G∆) = 0} otherwise. In this context, µδ gives a measure of
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the smallest structured uncertainty ∆ that causes closed-loop instability for any frequency ωµ ∈ R.
However, due to its non-convex character, µδ can be difficult to compute exactly. For that reason,
some very efficient algorithms [17] have been developed in order to estimate the bounds of µδ. Fig.
10 depicts the upper bounds of µδ for different subsets of uncertainty. These bounds are computed
for different values of t in Fig. 10a and across multiple frequencies in Fig. 10b, with ∆sloshc =
diag (∆m1 , . . . ,∆m6) and ∆slosht = diag (∆m7 , . . . ,∆m12). The peak of µδ occurs for t = 0 s
and for frequencies around ωS7−12 . However, even when combining all the uncertainty subsets, µδ

remains below 0.22 and therefore the loop can tolerate an increase in the uncertainty ∆P of 354%
while maintaining stability.

Figure 10: Robust stability plots with respect to different subsets of uncertainty: (a) upper bounds for
different values of t. (b) upper bounds across a dense grid of frequencies.

The impact of all the subsets of uncertainty was also assessed for different performance indicators
using structured singular value computations. Fig. 11 illustrates the upper bounds on the peak gain
for different performance signals across all frequencies ωµ and scheduling parameter values t. The
first performance transfers du → ep can be observed in Fig. 11a, which correspond to the absolute
pointing error tracking channels. In this case, the highest peak and worst-case scenario happens
for frequencies around 0.02 Hz and t = 10.4 s due to interactions between the controller and the
plant dynamics. The worst-case gains of the performance channels du → eu corresponding to the
maximum control effort are shown in Fig. 11b. Similarly to the behavior depicted in Fig. 11a, it can
be observed that the channels maintain values close to nominal ones even in the presence of significant
model uncertainty. Afterwards, there is a visible roll-off, which is caused by Fro(s). It can also be
seen in Figs. 11a and 11b that the upper bounds stay below both requirements, which are given by
0.0284 rad and 1.2 Nm, respectively.
Ultimately, Fig. 12 shows the singular values of G(s, t) for the channel du{3} → ep{3} as a function
of the scheduling parameter t, together with the gains of the worst-case scenario found in Fig. 11 for
the channels du → ep when considering ∆P (worst-case configuration of ∆P found for frequencies
around 0.02 Hz and t = 10.4 s, as stated before). The gains are always below 0 dB, meaning that the
hard constraint imposed in Eq. (11) is complied with.
This study is merely a glimpse of the potential offered by the TITOP multi-body approach. Con-
structing a model of any multibody flexible structure in LFR form through this approach allows for
the identification of worst-case scenarios without resorting to time-consuming Monte-Carlo methods
that are typically employed in the industry. In contrast to the standard point-wise Monte-Carlo analy-
sis, the approach proposed in this paper ensures complete coverage of the uncertainty space by means
of a worst-case analysis.
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Figure 11: Upper bounds on the gains of different performance channels with respect to different
uncertainty sets: (a) the absolute pointing error tracking channels du → ep. (b) the control effort
channels du → eu.

Figure 12: Singular values of the channel du{3} → ep{3} as a function of the scheduled parameter t
and gains of the worst-case scenario found for the channels du → ep.

5 CONCLUSION

This paper proposes a comprehensive modeling and control design methodology intended for on-
orbit servicing scenarios. The presented framework exhibits the intricate nature of OOS missions,
which are often marked by complex and challenging interactions between coupled flexible space-
craft, robotic arms and sloshing dynamics. To address this complexity, the proposed methodology
aims to develop a compact system representation that incorporates all relevant elements, with a view
to achieving a coherent and effective design model. The paper also offers a detailed overview of the
controller synthesis procedure, highlighting how to account for the different requirements and per-
formance limits. An essential aspect of this methodology is the posterior robust performance and
stability assessment, which serves as a necessary step towards ensuring the safety and reliability of
the proposed control law. The process of evaluating performance can provide useful insights into
system design and control, enabling the adjustment of structural designs or even the optimization
of mechanical parameters. Furthermore, the methodology’s ability to perform Validation and Ver-
ification cycles in a preliminary phase without high computational burden simulations is a crucial
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advantage. Ultimately, it should be noted that the methodology described in this paper is based on
the assumption that the system experiences minor deflections and maintains mostly linear dynamics.
This assumption is applicable to a broad range of space-related applications, as spacecraft typically
avoid large deflections and nonlinearities in structural dynamics by design.

Table 1: Chaser and target spacecraft mechanical data.

Parameter Description Value and Uncertainty

Chaser’s
rigid

hub B1

−−−−→
G1P1,2 distance vector between G1 and P1,2 written in RB1 [0, ±0.4365, 0] m
−−→
G1J0 distance vector between G1 and J0 written in RB1 [0.6508, 0, −0.4020] m
mB1 mass of B1 188.5 kgJB1

xx JB1
xy JB1

xz

JB1
yy JB1

yz

JB1
zz

 inertia of B1 at G1 written in RB1

41.98 3.84 0
43.89 0

42.64

 kgm2

Chaser’s
solar
arrays
A1,2

−−−−→
P1,2S1,2 distance vector between P1,2 and S1,2 written in RA1,2 [0, 1.0934, 0.0014] m
mA1,2 mass of A1,2 88.93 kgJ

A1,2
xx J

A1,2
xy J

A1,2
xz

J
A1,2
yy J

A1,2
yz

J
A1,2
zz

 inertia of A1,2 at S1,2 written in RA1,2

33.0918 0 0
7.3819 −0.0002

40.4578

 kgm2

[ω1A1,2
, ω2A1,2

, ω3A1,2
, ω4A1,2

, ω5A1,2
, ω6A1,2

] flexible modes’ frequencies [1.2850± 20%, 6.5896, 7.5231, 9.6937, 26.1311, 28.2408] Hz

[ξ1A1,2
, ξ2A1,2

, ξ3A1,2
, ξ4A1,2

, ξ5A1,2
, ξ6A1,2

] flexible modes’ damping [0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

LA1,2

P1,2
modal participation factors


−0.0007 −0.0078 7.8872 11.7690 0.0005 0.0010
−7.9401 0 0.0007 −0.0008 0.1089 12.1014
−0.3604 0 0.0006 0.0017 −2.6631 0.5399
0.0019 −0.0066 3.9818 0.9098 −0.0007 −0.0033
0.0272 0.0003 −0.0145 −0.0019 0.4907 −0.0221
−0.0010 0.0357 −2.2185 −0.2320 −0.0029 0.0012


Chaser’s

fuel
particles
S1−6

rG1C1−6 distance between G1 and C1−6 0.2 m
mS1−6 mass of S1−6 10.8291± 20% kg
kS1−6 springs stiffnesses 8 Nm−1

cS1−6 springs damping coefficients 0.8367 N sm−1

Target’s
rigid

hub B2

−−−−→
G2P3,4 distance vector between G2 and P3,4 written in RB2 [0, ±0.3395, 0] m
mB2 mass of B2 24.96kgJB2

xx JB2
xy JB2

xz

JB2
yy JB2

yz

JB2
zz

 inertia of B2 at G2 written in RB2

2.684 0.058 0.054
2.012 −0.104

2.32

 kgm2

Target’s
solar
arrays
A3,4

−−−−→
P3,4S3,4 distance vector between P3,4 and S3,4 written in RA3,4 [0, 0.7446, 0] m
mA3,4 mass of A3,4 11.3497 kgJ

A3,4
xx J

A3,4
xy J

A3,4
xz

J
A3,4
yy J

A3,4
yz

J
A3,4
zz

 inertia of A3,4 at S3,4 written in RA3,4

1.9566 0 0
0.3404 0

2.2968

 kgm2

[ω1A3,4
, ω2A3,4

, ω3A3,4
, ω4A3,4

, ω5A3,4
, ω6A3,4

] flexible modes’ frequencies [0.6493± 20%, 2.2480, 3.9870, 4.3455, 10.9601, 18.2744] Hz

[ξ1A3,4
, ξ2A3,4

, ξ3A3,4
, ξ4A3,4

, ξ5A3,4
, ξ6A3,4

] flexible modes’ damping [0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

LA3,4

P3,4
modal participation factors


0.0003 0 −2.7332 −2.8462 0.0001 −0.0003
2.8655 0 0 0.0002 −0.0025 −2.9305
−0.0002 0 −1.5206 −0.3709 0.0022 0.0003
−0.0119 0 −0.0058 −0.0017 −0.5800 0.0123

0 0 0.8207 0.0958 0.0002 −0.0001
0.0008 0.0001 −0.0007 0 0.0596 −0.0009


Target’s

fuel
particles
S7−12

rG2C7−12 distance between G2 and C7−12 0.1 m
mS7−12 mass of S7−12 2.1658± 20% kg
kS7−12 springs stiffnesses 2 Nm−1

cS7−12 springs damping coefficients 0.2510 N sm−1
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