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ABSTRACT

This paper presents a semi-analytical methodology to estimate the probability of capture into 1:1
ground-track resonance of a low-thrust spacecraft around an asteroid. The system dynamics are
described by a Hamiltonian model that considers the perturbations from the irregular gravitational
field up to the second order and degree, and the continuous low thrust that remains constant in
magnitude and is always in the direction opposite to the spacecraft’s velocity. The model focuses
on the equatorial case of the 1:1 ground-track resonance. When a trajectory is close to the reso-
nance location, its behavior becomes non-deterministic, making it necessary to estimate the prob-
ability of capture into resonance. A fourth-order polynomial is used to numerically approximate
the separatrices of the resonance region, while the change of the system’s energy balance when
the trajectory crosses the separatrices is determined with a global adaptive quadrature method.
Subsequently, the probability of capture into resonance is estimated, and the accuracy of the re-
sults is verified by comparing them to numerical simulations based on the perturbed Hamilton’s
equations of motion. This research makes a significant contribution to the field of astrodynamics
by systematically and efficiently analyzing the probability of low-thrust spacecraft capture into
ground-track resonance around asteroids.

1 INTRODUCTION

In 2011, the DAWN spacecraft successfully arrived at the asteroid Vesta. During the approach phase,
the spacecraft descended from a high-altitude mission orbit (HAMO) to a low-altitude mission orbit
(LAMO) utilizing low-thrust propulsion. The orbital radii of the HAMO and LAMO are 1000 km and
460 km, respectively [1]. However, the use of low-thrust propulsion during the descent phase posed
a risk of capturing the spacecraft into ground-track resonance (GTR) around Vesta, caused by the
chaotic layer surrounding the resonance region [2]. This is a type of resonance in which the period of
revolution of the spacecraft is commensurable to the period of rotation of the asteroid around its axis.
An example of 1:1 GTR is the geostationary orbit, in which the period of revolution of the spacecraft
is equal to the period of rotation of the Earth around its spin axis [3]. This mission demonstrated the
possibility of relying on low-thrust propulsion for the majority of the mission duration [4] [5]. The
use of low-thrust propulsion allows for more efficient use of fuel and longer mission duration but also
poses some challenges in terms of trajectory design [6]. However, the motion around Vesta is more
complex due to its irregular gravitational field. The spacecraft at each revolution encounters the same
gravitational configuration, the effect of which accumulates and significantly changes the orbit eccen-
tricity and inclination [7]. The capture of a spacecraft into a GTR has the potential to significantly
impact the success of a mission by preventing the reach of lower altitudes and the achievement of
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scientific objectives.

The primary aim of this paper is to utilize the Hamiltonian formalism to analyze the capture into GTR
phenomena and estimate the probability of capture into 1:1 GTR through a semi-analytical approach.
The methodology is based on analyzing the energy change that occurs when the spacecraft enters into
resonance with Vesta. a two-degree-of-freedom Hamiltonian model associated with the 1:1 GTR in
the equatorial case. This includes the perturbations from the irregular gravitational field up to the sec-
ond order, along with continuous low thrust that remains constant in magnitude and is always in the
direction opposite to the spacecraft’s velocity. Through this process, the equilibrium points, as well as
the libration and circulation regions, are identified. A global adaptive quadrature method is employed
to evaluate the system’s energy balance as the trajectory crosses the separatrix. Then, the probability
of capture into resonance is estimated as a function of the energy balance, and the accuracy of the
results is verified by comparing them with numerical simulations based on the equations of motion
derived from the Hamiltonian. A significant advantage of a semi-analytical investigation is the ease
with which the results can be obtained when the data changes. Our approach is highly adaptable to
similar missions, as the numerical values of parameters such as the shape and mass of the asteroid
or spacecraft orbit may vary, but the methodology remains the same, and the results can be readily
adapted accordingly.

The paper is organized as follows: Section 2 discusses the characterization of the dynamical en-
vironment around Vesta and the identification of the dominant perturbations. Section 3 provides a
description of the dynamic model for the motion of Dawn around Vesta and derives the equations of
motion. The semi-analytical methodology used to estimate the probability of capture into 1:1 GTR is
presented in Section 4. The results of the semi-analytical estimation and the comparison with numer-
ical estimations are discussed in Section 5, where the errors are also characterized. Finally, Section 6
summarizes the paper and presents the conclusions.

2 MAIN PERTURBATIONS

The physical parameters of Vesta are listed in Table 1, and it is assumed to rotate uniformly around a
constant direction in inertial space. The unnormalized Stokes coefficients of Vesta are given in [8].

Table 1: Vesta’s physical parameters [1]

Gravitational constant µ 17.5 km3/s2

Reference radius Re 300 km
Angular velocity ω 3.2671× 10−4 rad/s

The spacecraft is subject to the following perturbations [9]:

• Vesta’s gravitational perturbations

anm = (n+ 1)
µ

r2
Rn

e

rn

√
Cnm + Snm, (1)

• Sun’s gravitational perturbation

aSun =
2µSun

d3Sun
r, (2)
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• solar radiation pressure perturbation

aSRP = Cr
A

m
P⊙ (3)

where r represents the distance from the spacecraft to Vesta, Cnm and Snm are the unnormalized
Stokes coefficients, n and m are the degree and order of the spherical harmonic expansion considered,
µ⊙ represents the gravitational constant of the Sun, d⊙ is the distance of the spacecraft from the Sun,
Cr = 0.25 is the reflectivity coefficient of the spacecraft, A/m = 0.04 is the area-to-mass ratio of the
spacecraft, and P⊙ is the solar radiation pressure at a distance d⊙ from the Sun. The magnitudes of the
main perturbations at different orbital radii are illustrated in Fig.1. At the orbital radius corresponding

400 500 600 700 800 900 1000

Orbital radius [km]

10-15

10-10

10-5

P
e

rt
u

rb
a

ti
o

n
 M

a
g

n
it
u

d
e

 [
k
m

/s
2
]

1:1 GTR 2:3 GTR

J20

J22

J30

J40

Sun

SRP

Figure 1: Order of magnitude of the various perturbations to which the DAWN spacecraft is subject at different
orbital radii. The location of the 1:1 and 2:3 GTRs are highlighted for reference.

to the 1:1 GTR, i.e. 550 km, Vesta’s gravitational perturbations are an order of magnitude stronger
than the perturbations from the Sun’s gravitational attraction, and the solar radiation pressure. This
highlights the importance of accurately accounting for Vesta’s gravitational influence in the dynamic
modeling of the spacecraft’s trajectory. Furthermore, it is worth noting that the relative magnitudes
of these perturbations can vary significantly depending on the orbital radius of the spacecraft. Given
the dominant effect of Vesta’s irregular gravitational perturbations at the 1:1 GTR and the potential
impact on the spacecraft’s trajectory, in this paper, only these perturbations are considered in the
dynamic model.

3 DYNAMIC MODEL

This section presents the Hamiltonian that governs the motion of a spacecraft around an asteroid
with an irregular gravitational field. Specifically, the Hamiltonian is focused on the 1:1 GTR in the
equatorial case and the resulting equations of motion are established. The impact of non-conservative
forces, such as the low-thrust, is also accounted for. To simplify the model, it is expanded around the
1:1 GTR location, resulting in a pendulum-like expression.
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3.1 Hamiltonian model

The gravitational potential of a central body can be represented as a function of spherical harmonics
[10], where the shape and density variations of an asteroid are expressed using the Stokes coefficients.
The potential, denoted as V , is expressed as a series expansion of spherical harmonics up to degree n
and order m as

V =
µ

r
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

µRn
e

an+1
Fnmp(i)Gnpq(e)Snmpq(ω,M,Ω, θ), (4)

where Fnmp(i) and Gnpq(e) are functions of the inclination i and eccentricity e, respectively, a is the
semi-major axis, ω is the argument of periapsis, M is the mean anomaly, Ω is the longitude of the
ascending node, θ is the sidereal time and n, m, p, q are all integers and

Snmpq =

{
Cnm cosΨnmpq + Snm sinΨnmpq, if n−m is even,
−Snm cosΨnmpq + Cnm sinΨnmpq, if n−m is odd,

(5)

where Ψnmpq is the Kaula’s phase angle that is defined as

Ψnmpq = (n− 2p)ω + (n− 2p+ q)M +m(Ω− θ). (6)

When the rate of change of Kaula’s phase angle Ψ̇nmpq is close to zero, the GTRs occur. Let L =
√
µa,

the Hamiltonian describing the spacecraft’s motion around an asteroid with an irregular gravitational
field is defined as

H = − µ2

2L2
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

Rn
e

µn+2

L2n+2
Fnmp(i)Gnpq(e)Snmpq(ω,M,Ω, θ) + θ̇Λ, (7)

where Λ is the conjugated momentum to the sidereal time θ and the term θ̇Λ accounts for the aster-
oid’s rotation. The gravitational term of second degree and order primarily affects the dynamics of the
system close to the 1:1 GTR [11]. Therefore, the Hamiltonian used in the analysis considers only this
harmonic. The Hamiltonian that describes the 1:1 GTR dynamics around the asteroid is expressed as

H1:1 = − µ2

2L2
+R2

e

µ4

L6
F220(i)G200(e)S2200(ω,M,Ω, θ) + θ̇Λ. (8)

For an equatorial orbit (i = 0◦), the Hamiltonian is

H1:1 = − µ2

2L2
− 15

2
R2

e

µ4

L6

(
−3

5
+

G2

L2

)
C22 cos(2(M + ω − θ)) + θ̇Λ, (9)

where L and G = L
√
1− e2 are the momenta conjugated respectively to M and ω. A canonical

transformation is performed with the generating function F = (M +ω− θ)L′+(−ω)G′+ θΛ′ which
leads to the new set of canonical variables

σ = M + ω − ϑ , Q = −ω , L = L′ , G = L′ −K , Λ = −L′ + Λ′. (10)

The new Hamiltonian H̃1:1 is
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H̃1:1 = − µ2

2L2
− 15

2
R2

e

µ4

L6

(
−3

5
+

(L−G)2

L2

)
C22 cos(2σ)− θ̇L, (11)

where the prime sign is dropped for clarity. Fig.2 shows the phase portrait of H̃1:1, where the upper
separatrices are indicated with the red line l1 and the lower ones with l2.
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Figure 2: Phase portrait of H̃1:1. The red lines l1 represent the upper separatrices, while l2 represents the lower
separatrices.

3.2 Non-conservative forces

One approach to account for energy dissipation is to add terms to Hamilton’s equations of motion that
account for the presence of dissipative forces [12]. The change of L over time can be related to the
change of a as

dL

dt
=

µ

2L

da

dt
. (12)

From [13], the rate of change of the semi latus rectum p = a(1− e2) due to tangential accelerations is

dp

dt
=

2

v
atp, (13)

where v is the spacecraft velocity and at is the magnitude of the tangential acceleration from the low-
thrust. So,

dL

dt
= TL = − T

m

L2

µ
. (14)

Since K = L−G, the rate of change of K over time is

dK

dt
=

dL

dt
− dG

dt
. (15)
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The rate of change of G over time is related to the rate of change of e as

dG

dt
= − T

m

LG

µ
− e

L2

G

de

dt
. (16)

From [13], the rate of change of e due to the low-thrust is

de

dt
=

1

v

(
−2

T

m
(e+ cos θ)

)
. (17)

To eliminate the dependency on the true anomaly, the expression is averaged over the mean anomaly.
Considering the second term of de/dt, the following integral is defined

I =
1

2π

∫ 2π

0

cos θdM. (18)

The integrand and the differential of the mean anomaly are expressed as a function of the eccentric
anomaly E as

cos θ =
cosE − e

1− e cosE
and dM = (1− e cosE)dE. (19)

So the integral I becomes

I =
1

2π

∫ 2π

0

(cosE − e)dE = −e. (20)

Therefore, de/dt = 0. Finally, the rate of change of K is

dK

dt
= TK = − T

m

LK

µ
. (21)

Introducing the variable p = L− Lr, the equations of motion are
σ̇ = dH̃1:1

dp

ṗ = −dH̃1:1

dσ
+ TL

K̇ = TK

(22)

Fig.3 shows the numerical verification of the resonance capture phenomenon for e = 0.5, with a set
of uniformly distributed initial resonance angles between [0,2π] and the initial altitude of 700 km.
The simulation results indicate that the spacecraft is captured into resonance, as highlighted in red in
Fig.3. Once captured, the momentum p exhibits libration around the resonance location at p = 0, as
shown in the upper left plot of Fig.3. The upper right plot in Fig.3 shows the trajectory of the system
in phase space, where the trajectory captured into resonance rotates around the stable equilibrium
point (σ,p) = (π/2,0). During the system’s evolution, the momentum K decreases, and e remains
almost constant until the separatrix crossing. After that, e starts to oscillate, and the average value
decreases over time.
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Figure 3: Evolution of p, K, and e over time and representation in phase space of the resonance crossing with
T = 20 mN. The capture case is highlighted in red.
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3.3 Pendulum approximation

In this section, an approximation of the complete Hamiltonian model is presented. Considering Eq.11,
the Hamiltonian is divided as

H̃1:1 = − µ2

2L2
− A(L,K) cos(2σ)− θ̇L. (23)

The resonance is located at Lr defined from

µ2

L3
r

= θ̇. (24)

Then, the Hamiltonian is expanded around the resonance up to the second order leading to

Ĥ1:1 = −1

2
αp2 − Â(Lr, K) cos(2σ), (25)

where

Â(Lr, K) =
15

2
R2

e

µ4

L6
r

(
−3

5
+

(Lr −K)2

L2
r

)
C22 and α =

3µ2

L4
r

, (26)

and the constant term is discarded. The Hamiltonian Ĥ1:1 resembles the structure of a pendulum’s
Hamiltonian, composed of two main components: a quadratic term that represents the system’s kinetic
energy, and another term that accounts for the system’s potential energy.

4 METHODOLOGY

This section presents the semi-analytical methodology to estimate the probability of capture into 1:1
GTR. The domain (σ,p) where the initial conditions are uniformly distributed is defined and denoted
by U . A subset of initial conditions, labeled as Ures, can be identified within this domain, which
corresponds to the capture of the system into the resonance domain. Then, the probability of capture
into resonance can be determined by

Pr =
mesUres

mesU
, (27)

where mesUres and mesU are the volumes of domains of Ures and U in phase space, respectively.
This formulation is suitable only for numerical evaluation of the probability. To obtain an analytical
estimation, it is necessary to express the probability in a different form using the energy-related quan-
tities of the system. From [14], the probability of capture into 1:1 GTR is defined as

Pr =

∫
l1∪l2 d

≈
H1:1/dt dτ∫

l1
d

≈
H1:1/dt dτ

, (28)

where
≈
H1:1 = H̃1:1 − H̃SP and H̃SP is the value of the Hamiltonian H̃1:1 at the saddle point. The

integral in the numerator is computed along the upper separatrix l1 and the lower separatrix l2, whereas
the integral in the denominator is calculated only along the upper separatrix. These integrals are
improper as the motion along a separatrix takes an infinite amount of time. Thus, the normalization
of the Hamiltonian guarantees the convergence of the integrals [15].
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4.1 Complete model

The probability estimation is based on the normalized complete Hamiltonian model
≈
H1:1. The saddle

points are defined from

∂
≈
H1:1

∂p
= 0 and σ = 0, π. (29)

Next, the values of the separatrices psep are determined numerically using an N-th polynomial func-
tion. Specifically, this involves fixing the value of K = Ksep at the point when the system crosses the
separatrix

psep =
N∑
i=0

ciσ
i. (30)

It is found that the separatrices are approximated with good accuracy with a 4th order polynomial.
The lower and upper separatrices are identified as plowsep and pupsep. Firstly, the integral at the denomina-
tor of Eq.28 is solved as

∫
l1

d
≈
H1:1

dt
dt =

∫
l1

d
≈
H1:1

dp
TLdt+

∫
l1

d
≈
H1:1

dK
TKdt = (31)

=

∫ 0

π

TLdσ +

∫ 0

π

d
≈
H1:1

dK

1

d
≈
H1:1/dp

TKdσ. (32)

The expression is evaluated at p = pupsep(σ) and numerically integrated using the global adaptive
quadrature method [16]. The global adaptive quadrature divides the integration domain into smaller
subintervals and compute the integral over each subinterval separately. The integral is then approx-
imated as the sum of the integrals over the subintervals. The subintervals are chosen in such a way
that the error in the approximation is minimized. In a similar way, the numerator is developed.

4.2 Pendulum approximation

As for the complete model, the value of the Hamiltonian is normalized, so that ˆ̂H1:1 = Ĥ1:1 − Â. The
new Hamiltonian ˆ̂H1:1 is

ˆ̂H1:1 = −1

2
αp2 + 2Â sin2 σ. (33)

The non-conservative contributions TL and TK from Eq.14 and Eq.21 are approximated as

TL = εL2 ∼ ε(L2
r + 2Lrp) (34)

TK = εLK = ε(LrK +Kp), (35)

in which the second-order term is neglected. Using the chain rule and the perturbed Hamilton’s equa-
tion, the rate of change of ˆ̂H1:1 is defined as
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Table 2: Initial conditions

Resonance angle [0, 2π]
Semi-major axis [690,700] km

Eccentricity 0.5

d ˆ̂H1:1

dt
= −αpTL + 4Â sinσ cosσ Tσ + 2

dA

dK
sin2 σ TK . (36)

Along the separatrix l1, the Hamiltonian ˆ̂H1:1 = 0, so

psep = ±2

√
A

α
sinσ. (37)

Combining Eq.36 and Eq.37, the probability of capture into 1:1 GTR is

Pr =
16Lr

√
Â
α
− 4 ∂Â

∂K
LrK

1√
Âα

πL2
r + 8Lr

√
Â
α
− 2LrK

∂Â
∂K

1√
Âα

− π
α
K ∂Â

∂K

. (38)

The probability formulation is independent of the spacecraft mass and the thrust magnitude, as can be
observed from the equation. By analyzing each term, the dominant terms in the probability formula-
tion are identified. For the pendulum approximation, the probability of capture into the 1:1 GTR in
the equatorial case is simplified to

Pr =
2

π
8

3

√
µ

θ̇2C
3/2
22 R3

e

+ 1
. (39)

In the following sections, the probability estimation methods will be referred to as follows: the esti-
mation using Eq.27 will be called the numerical approach, the estimation using Eq.28 will be called
the semi-analytical approach, and the estimation using Eq.38 will be called the analytical approach.

5 RESULTS

This section presents the estimations obtained using the semi-analytical and analytical methods and
compares them with the numerical estimations. The probability of capture is estimated for three cases
based on the thrust magnitude intervals: high thrust magnitude cases with T = [20, 90] mN, low thrust
magnitude cases with T = [0.2, 20] mN, and very low-thrust magnitude cases with T = [0.02, 0.2]
mN. If not specified, the initial conditions for the simulations are listed in Table 2.

5.1 Sensitivity on the thrust magnitude

The probability estimations obtained using the three approaches are compared and presented in Fig.4.
For each of the three thrust magnitude intervals, the probability is estimated for 100 different thrust
magnitudes, which are uniformly distributed within the given interval. For each thrust magnitude,
1000 trajectories are numerically propagated. The initial conditions of these trajectories are uniformly
distributed with 100 different values for p and 10 different values for σ. The probability estimated
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Figure 4: Probability of capture into 1:1 resonance for e = 0.5 and T = [0.02, 0.2] mN (upper plot), T =
[0.2, 20] mN (middle plot) and T = [20, 90] mN (lower plot). The black line represents the probability of
capture estimated using numerical simulation, the red dashed line represents the probability of capture estimated
using the semi-analytical approach and the blue dashed line represents the probability of capture estimated using
the analytical formulation.
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numerically is represented with a black line in the three plots, while the semi-analytical and analytical
results are represented by red and blue dashed lines, respectively. The semi-analytical and analytical
estimations of probability are found to be independent of the thrust magnitude. For the very low-thrust
magnitude cases, the semi-analytical estimation is in good agreement with the average numerical es-
timation, while the analytical one overestimates the probability. As the thrust magnitude increases,
the probability of capture decreases on average and the semi-analytical and analytical methodologies
do not follow this trend. For the high thrust magnitude case, the numerically estimated probability
of capture shows an oscillatory behavior, and the new estimation methodologies are not able to accu-
rately estimate the probability of capture for these two cases. For this reason, in the last part of the
paper, the thrust magnitude interval between 0.02 mN and 0.2 mN is considered.

5.2 Sensitivity on the initial eccentricity

This section analyzes the sensitivity of the probability of capture to changes of the initial eccentric-
ity. Fig.5 shows the probability of capture for various eccentricity values. The average value of the
numerically estimated probability of capture remains constant for all eccentricity values. For small
eccentricities, the probability of capture estimated with the semi-analytical and analytical methodolo-
gies matches with each other. However, as the eccentricity increases, the semi-analytical estimation
approaches the numerical estimation. These observations are summarized in Fig.6. For low eccen-
tricity values, the numerical estimation remains almost constant at approximately 12.7%, whereas it
increases to around 13.8% as the eccentricity increases. The analytical estimation (blue line) gives
an almost constant value of about 14.36%, serving as an upper bound for the mean probability of
capture. The semi-analytical estimation correctly estimates the probability of capture for high eccen-
tricity cases and converges to the analytical estimation as the eccentricity decreases. This is due to the
fact that the phase space of the complete model closely resembles that of the Hamiltonian’s pendulum
approximation, as illustrated in Fig.7.

6 CONCLUSIONS

The purpose of the current study is to introduce a semi-analytical approach to estimate the probability
of capture into 1:1 GTR of Dawn around Vesta. The proposed two-degree-of-freedom Hamiltonian
model includes the effects of the spherical harmonic approximation of the gravity field of the asteroid
up to the second order and degree. Additionally, the effect of the low-thrust is taken into account
by modifying Hamilton’s equations. The general formulation of the probability of capture into res-
onance is presented and adapted for the case under consideration. An approximation of the Hamil-
tonian model is developed by expanding the function around the location of the resonance, which
leads to an analytical formulation of the probability of capture. The results from the semi-analytical
and analytical methodologies are compared with the ones obtained numerically. Then, the sensitivity
of the probability with respect to the thrust magnitude and eccentricity is analyzed. It is found that
the methodologies are suitable for very low thrust magnitudes and high eccentricity. For low eccen-
tricity values the analytical and semi-analytical methodologies provide an upper bound value for the
probability of capture. In the future, additional investigations are recommended to adapt the method-
ologies for low eccentricity cases and generalize the methodologies for other GTR, such as the 2:3
GTR which is one of the main resonances around Vesta.
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the probability of capture estimated using the semi-analytical approach and the blue dashed line represents the
probability of capture estimated using the analytical formulation.
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