
MASCOT OBSW Development and Verification Facility – A cost effective approach 

 

 
Johan Marx(1), Eduard Baumstark(1), Federico Cordero(1) 

 
(1) Telespazio VEGA Deutschland GmbH 

Europaplatz 5 

D-64293 Darmstadt 

Email: info@telespazio-vega.de 

 

 

 

INTRODUCTION 

 

This paper will summarize the solutions used to develop the Mobile Asteroid Surface Scout (MASCOT) Software 

Development and Verification Facility (SDVF). The SDVF was developed based on a cost effective approach in order 

to fit within the tight cost and schedule constraints of the MASCOT mission. This approach included the reuse of ESA 

infrastructure (SIMULUS, SCOS2000), and COTS elements (TSIM emulator, hardware interface cards, etc.).  

The experience gathered throughout the lifecycle of the MASCOT project, where the SDVF had different use cases, 

enables us to present the advantages and disadvantages of the chosen approach. 
 

MISSION 

 

MASCOT was a small asteroid landing spacecraft developed by DLR in collaboration with CNES as contribution to 

JAXA’s Hayabusa-2 mission. The lander contained four scientific instruments and had the capability to relocate itself 

on the asteroid surface. The first MASCOT concept was established around 2008 during the European Marco Polo 

mission assessment. After the discontinuation of the original study, MASCOT received an invitation from JAXA to join 

the Hayabusa-2 mission, the follow-up of the first asteroid sampler Hayabusa. However, MASCOT was selected at a 

time (mid 2011) when its design had not been fully defined, with the carrier spacecraft already in its critical design 

phase, its interfaces fixed and only 3 years left until a final delivery. 

The tight schedule, the tightly defined physical envelope and mass, and strict margins policy were challenges during its 

development at all levels. Nevertheless, Hayabusa2 and MASCOT were launched on December 3rd, 2014, and arrived 

at their destined target asteroid (162173) Ryugu on June 27, 2018. 

The successful landing on the asteroid and the science operations took place on 3rd of October 2018 [1][2][3].  

Telespazio VEGA Deutschland’s roles were the technical management of the OBC HW procurement, the development 

of the OBSW, as well as the SDVF procurement and development. 

 

A SDVF DESIGN BASED ON REUSE 

 

The ESA SIMULUS infrastructure was adopted for the implementation of the SDVF to support the development and 

validation of the MASCOT On-Board Computer (OBC) flight software. The SIMULUS components used in the SDVF 

are the run-time framework, Simulation Infrastructure for the Modeling of SATellites (SIMSAT) Kernel and Man 

Machine Interface (MMI), and a set of reusable generic models (GENM). 

The ESA SCOS-2000, providing a generic mission control system software, was also adopted to have a Central 

Checkout System (CCS) to support the testing/validation during the MASCOT hardware integration and testing 

activities, enabling the SDVF to be used as an EGSE. On top of the reuse of ESA infrastructure, several COTS elements 

were used to lower the need for new development. 

 

To support the On-Board Software (OBSW) development, the SDVF allowed the replacement of the OBC hardware 

with a processor instruction emulator (TSIM) and the replacement of the equipment/science instruments hardware with 

simulated models. This allowed to proceed with the OBSW development, debugging and preliminary testing in parallel 

with the actual MASCOT hardware development, including the OBC, de-risking the tight schedule driven development. 

In summary, the SDVF main off the shelf components were the following: 

 I/O interface cards (bricks and cards for Hardware-In-The-Loop testing) 

 A virtual simulator (based on ESA SIMULUS infrastructure) 

 A processor emulator compatible with the selected LEON chip (Gaisler Research TSIM) 

mailto:info@telespazio-vega.de


 A Central Check-out System (ESA SCOS2000) 

 An Integrated Development Environment to be used during the development and debugging of the OBSW 

In the end, only the equipment/instrument model needed to be developed from scratch (based on GENM). All other 

components were either COTS or reused and only required specialized interfacing, configuration and integration. This 

allowed the SDVF development to keep up with the demanding schedule of the mission. 

 

SDVF OVERALL SYSTEM ARCHITECTURE 

 

In order to connect all hardware and software components, a star architecture around a central “Model Switch” was put 

in place. This means that any possible software/hardware configuration could be achieved by modifying the 

configuration files of the switch. The model data interfaces are based on packets and the Model Switch routes the 

packets from their source model to their destination model based on a routing table, defining, as a matter of fact, the 

overall SDVF configuration and use case. The connection points can be either internal functional interfaces for the 

virtual models or TCP/IP ports for the real hardware interfaces. The modular design allows for hot swapping of any 

software models with their equivalent hardware. This design also enables the integration testing and validation even 

through remote connectivity, which was used in a few occasions during the HW/SW integration campaign.   The use of 

TCP/IP for connecting the hardware interfaces was possible due to the maximum latency allowed by the OBC 

communication protocol with the equipment/instruments (200ms for most interfaces, 100ms for a couple of them).  

The virtual simulator and the Model Switch are fully contained in the SIMSAT simulation environment which allows 

the usage of its inherent functionalities as the state saving, the script engine, the service scheduler and the MMI. 

The Fig. 1 shows the SIMSAT based SDVF functional block diagram as implemented for the MASCOT project. 

Central 

Check-out 

System

(CCS)

Debugging 

with TSIM

(gdb)

Functional

Interfaces

TCP/IP

GRMON

T
e

s
t
S

c
ri
p

ts

S
c
ri

p
t

E
n

g
in

e

State Breakpointing

SIMSAT

Model

Switch

Eclipse CDT/IDE

TCP/IP

Saved State

C
o
n
fi
g

u
ra

ti
o

n

S
c
ri
p

ts

M
A

S
C

O
T

H
a
rd

w
a
re

U
n

it
s

Driver Interfaces

I/
O

 C
a
rd

s

Scheduler

MMI

PDCU 

model

CAM 

model

uOmega 

model

MARA 

model

MAG 

model

Dynamic 

model

GR712RC + FPGA 

I/O Module

TSIM2– LEON3

Debugging 

with OBC HW

(gdb)

State IF

(discrete IO)

GNC 

sensors 

model
MMC 

model

Mothership

model

COM 

model

Other 

sensor 

models

T
D

B
E

D

TM/TC DB

(MS Access)

Export to 

other users

Physical lines:

•ASL(RS422)

•Spacewire

•AVM, TSM, 

CSM, LPC

Export

Export

OBC model

Trajectories

 
Fig. 1. SIMSAT based SDVF 

 

 

 



The SDVF equipment/instrument virtual models are: 

 LEON3-FT processor core emulator (TSIM) 

 Specific MASCOT OBC IO module (Main and Redundant) 

 Power Control and Distribution Unit (PCDU) 

 Communication Module (COM) 

 Guidance, Navigation and Control (GNC) Sensors 

 Mobility Mechanism (MMC) 

 Magnetometer (MAG) 

 Radiometer (MARA) 

 Wide Angle Camera (CAM) 

 Infrared Microscope (uOmega) 

 

In addition the SDVF includes a model of the Hayabusa-2 spacecraft to simulate the Communication Subsystem (COM) 

parent functionality, as well as a State Acquisition model responsible for generating the periodic Analogue Voltage 

Monitor (AVM), Temperature Sensor Monitor (TSM) and Contact Status Monitor (CSM) readings. A lander Dynamics 

model is driving the input/output for the GNC sensors and the mobility mechanism. 

 

The SDVF was initially used in a pure virtual configuration as a development environment and for software unit 

integration and testing; subsequently, it is was used as a powerful tool for system test and validation of the flight 

software versions with the real hardware equipment. 

The development cycle was such that an OBC flight software version was engineered, deployed on the processor 

emulator and debugged/preliminarily tested using the virtual models of the scientific instruments / equipment. The final 

validation step of the software version, before delivery to the customer, foresaw the processor emulator replaced by a 

real OBC hardware model (EM) and tested while still using the instrument/equipment virtual models. Once the flight 

software version was delivered, the customer could integrate and test it at system level on the lander under assembly 

using a SDVF instance configured as an EGSE, where all hardware virtual models could be replaced by the real 

instruments/equipment hardware units as they became available. 

The development of the software could therefore start, continue and evolve in parallel to the development of the 

hardware until the final fully featured flight software product was delivered and integrated. 

 

SDVF WITH HARDWARE-IN-THE-LOOP 

 

Software components 

 

As mentioned previously, the simulated/emulated components can be replaced by the corresponding hardware. 

However, additional interface drivers were needed for connecting the Model Switch with the hardware components. 

The interface programs are connecting to the Model Switch over TCP/IP and a corresponding configuration of the 

switch is necessary a priori to their start. The interfaces depend on the connection type and several of them were 

developed to provide all the connectivity needed by the OBC. The following interface programs were developed for the 

SDVF: 

 Digital to Analog TCP/IP interface to allow communication with both analog and digital signals (DAC/DIO 

boxes)  

 SpaceWire TCP/IP interface 

 Asynchronous Serial Link (RS422 UART) TCP/IP interface 

The Fig. 2 shows how the interfaces are integrated in the purely virtual SDVF to allow communication with the 

hardware. 

 



Central 

Check-out 

System

(CCS)

MM

I / 

Log

ger

Functional

Interfaces

GRMON

S
c
ri

p
t

E
n

g
in

e

State Breakpointing

SIMSAT

Model

Switch

Eclipse 

CDT/IDE

TCP/IP

Saved State

AslTcpIf

U
S

B
-R

S
4
2
2

Scheduler

MMI

PDCU 

model

CAM 

model

uOmega 

model

MARA 

model
MAG 

model

Dynamic 

model

Debugging 

with OBC HW 

via GDB

Other 

sensors 

model

GNC 

sensors 

model

MMC 

model

Mothership

model

COM 

model

…
…

AslTcpIf

U
S

B
-S

p
W

SpwTcpIf

U
S

B
-D

A
C

/D
IO

U
S

B
-D

A
C

/D
IO

DacTcpIf

DacTcpIf

U
S

B
-J

T
A

G
 

OBC 

Hardware
SDVF

T
D

B
E

D

TCP/IP

TCP/IP

I/O HW Interface Cards: 

USB-RS422 

USB-Spacewire 

USB-DAC IO 

USB-JTAG

TCP interface programs 

connecting I/O HW 

Interface Cards with 

simulation models

TCP/IP

TCP/IP

TCP/IP

SpW
SpW
RS422

RS422

AVM&TSM

AVM&TSM

CSM&LPC

CSM&LPC

JTAG

Configuration

Scripts

Test

Scripts

Trajectories

 
Fig. 2. SDVF connected with the Hardware OBC (Processor-In-the-Loop configuration) 

 

 

Hardware components 

 

In order to integrate the required hardware subsystems, several types of I/O interface bricks had to be procured and 

connected to the workstation hosting the SDVF. The communication with these bricks was done via the TCP/IP driver 

interfaces as mentioned in the previous section. The I/O bricks were attached through USB and offered access to RS422 

Serial, SpaceWire and Digital and Analog I/O interfaces of the OBC as follows:  

 2 SpaceWire-USB Bricks used to connect the OBC hardware to the CAM and uOmega models  

 14 RS422 interfaces for the connection of the OBC hardware (main and redundant links) to the COM, PCDU, 

MMC, MARA and MAG models 

 2 USB DAC bricks for connecting the OBC hardware digital and analog I/O interfaces with the relevant 

models (GNC sensors, thermal sensors, separation sensor, etc.) 

The Fig. 3 shows the complete SDVF with the Processor-In-the-Loop configuration. 

 



 
 

Fig. 3. SDVF with OBC Hardware in the Loop and Interface Cards 

 

 

CONCLUSION 

 

The chosen solutions led to an original all-in-one design for supporting the OBSW development and use as EGSE for 

MASCOT AIT/AIV at DLR. Furthermore the SDVF subsequently evolved into an Operational Simulator to support the 

DLR Flight Control Team. 

The SDVF’s modular design not only ensured that the whole MASCOT project could be realized within the tight 

development schedule, but also provided a substantial cost reduction for the customer. 

Our experience with this SDVF design in terms of advantages and disadvantages can be summarized as follows: 

Advantages 

 

1. Basing the SDVF on SIMULUS allowed us to keep up with the tight schedule and cost demands of the 

mission. The SDVF could be quickly developed and deployed with a low cost due to the reuse of the generic 

models and the SIMULUS infrastructure.  

2. The integration of a debugging interface with the emulator in the SDVF (via GRMON for OBC hardware) 

allowed the OBSW developers to debug directly from their integrated development environment (Eclipse). 

This reduced the troubleshooting effort during the OBSW development and maintenance considerably. 

3. Using the SIMULUS infrastructure allowed a quick and seamless evolution of the SDVF into an Operational 

Simulator to support the DLR Flight Control Team. The existing instruments / equipment models already 

contained a fully-fledged data handling interface and needed only to be extended with the corresponding 

functional models. 

4. The modular design based on the Model Switch allowed for hot swapping of any software models with their 

equivalent hardware.  

5. Interfacing the software models with the hardware through TCP/IP allowed the integration, testing and 

validation even through remote connectivity. 

6. The SDVF was designed to keep the timing between all models as consistent as possible among all the models, 

to ensure suspension and resumption of the overall simulation at any point in time. This allowed the OBSW to 

be easily debugged using the Full Virtual SDVF configuration, allowing breakpointing in order to resume the 

OBSW execution at any line of the code. 

 

 



Disadvantages 

1. Interfacing the software models with the hardware through TCP/IP led to high latency in the communication. 

This was however still tolerated by the OBSW due to an OBC communication protocol with the 

equipment/instruments allowing for such latency by design. Extra effort was however necessary in order to 

increase the robustness of the hardware in the loop OBSW testing. 

 

2. SIMULUS is not a real time simulation infrastructure. Mainly the non-timely and inconsistent interaction 

between the Script Engine and Simulation Scheduler, both SIMSAT components, caused some issues in the 

hardware in the loop OBSW validation. This also required extra effort in order to increase the testing 

robustness.   

 
 
REFERENCES 
 
[1] C. Grimm, J.-T. Grundmann, J. Hendrikse, C. Lange, C. Ziach, T.-M. Ho, From idea to flight - A review of the 

Mobile Asteroid Surface Scout (MASCOT) development and a comparison to historical fast-paced space 
programs, Progress in Aerospace Sciences, Vol.104 (2019) 20–39 

[2] F. Cordero et al, MASCOT lander operational concept and its autonomy, general services and resource 
optimisation implementation in the on-board software, SpaceOps 2016 Conference AIAA 

[3] S. Habinc et al, MASCOT On-Board Computer Based on GR712RC, DASIA 2013. 
 


