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Context

Conventional Approach VS AI Based Approach

Moon Surface
Asteroid surface
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Classical Design

Conventional Absolute Navigation

Off-line:

- DEM & Geo Referenced Images

Landmark extraction

-Generation and Validation of the Landmark database

On-line:
- Landmark extraction from navigation image
- Landmark matching with data base

- S/C states estimation using matched
landmarks
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AI Absolute Navigation Concept Design

NN-VISNAV

- Crater Edge Extraction based on Deep
learning NN

Sensors

Navigation

- Deep Learning NN trained with different Camera
image datasets

- Trained NN use to extract the Landmarks on
testing scenario

- NN implemented in dedicated FPGA will
provide the edges detected in the image

- HW/SW co-design used to run Crater Frame
Positon and Crater Frame Matching

© 2021 GMV Property - All rights reserved Page 5



AI Absolute Navigation Concept Design

AITAG

- Crater detection and localization based on -
DNNs

Sensors ]

- List of craters, their estimated size and their {
position

- Implemented in dedicated Al accelerator —
Myriad2 Navigation
camera
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Patch matching on astercR)eEecrzlence o
images concept design

AITAG observation asteroid scenario

Matching reference patch within images from +
the camera

Query image

Potential improvements:
« Autonomous pinpointing of camera

+ Filtering downlink of camera images,
reducing throughput

Based on using DNN that calculates similarity
score between patch camera and subimage in
query image
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FPGA Firmware Development

Convolution2D

- Network Parameters are called filters or kernels
- Filters are generated in the training process

- Applications in image and video recognition,

recommender systems, image classification,
medical image analysis

- Simple arithmetic: dot product between a
portion of the image and a kernel. Then multiple
convolutions are added together to create a single
output channel

Max pooling2D module
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- Keep the pixel with a higher value from a group a 4 adjacent pixels
- Resolution is reduced by a factor of 2 (4 times less pixels)
- Itis a way of summarize information about an area of pixels

UpSampling 2D module
- Nearest Neighbor Scaling
- Duplicates input pixels vertically & horizontally
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FPGA Design

Controller
« Finite State Machine
« Scheduler ROM
e Write/Read from DRAM
« Retrieval of parameters from DRAM
« Store and retrieval of intermediate layer
results

Processing pipeline
* Processing Units
* DSPs inverse pyramid
« Output buffer
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FPGA Design

» Flexible design

» Possibility of trading off utilization of
resources for speed PU

¢ More convolution blocks for improved Cache Cache Cache
speed memory @ memory * v memory

« Fewer convolution blocks for fewer
utilization of resources

* More cache memory blocks for bigger
feature maps capabilities

Max
Pooling

Up

Sampling
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Avionics Architecture

FPGA-based acceleration of the DNN
OBC (client) + FPGA (inference server)

Ethernet connection
Custom protocol over raw Ethernet packets

Support for packet fragmentation and multi-packet
acknowledge

Specific VHDL modules for each layer type

Parameterized
Offline generation of schedule instructions
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Avionics Architecture - Demonstrator

Alpha DEV Kit 2
Kintex UltraScale KCU060

Python command line interface

FMC ¥ g
connection  {§ ®ov
.

loading the bitstream

loading model parameters

sending query images

executing the inference

retrieving results from any layer of the model
monitoring the status of the system
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Avionics Architecture

Moon Scenario

* To implement the pre trained
neural network of the Moon
Scenario in HW requires 30
different layers

© 2021 GMV Property - All rights reserved

Layer Module Name Processing units used
Convolution 2048x2048 1 PU
Max Pooling 2048x2048 1 PU
Convolution 1024x1024 S PU
Max Pooling 1024x1024 1 PU
Convolution 512x512 9 PU
Convolution 512x512 10 PU
Max Pooling 512x512 1 PU
Convolution 256x256 10 PU
Convolution 256x256 7 PU
Max Pooling 256x256 1 PU
Convolution 128x128 7 PU
Convolution 128x128 14 PU
Max Pooling 128x128 1 PU
Convolution 64x64 14 PU
Convolution 64x64 14 PU
Up Sampling 64x64 1 PU
Convolution 128x128 14 PU
Convolution 128x128 14 PU
Up Sampling 128x128 1 PU
Convolution 256x256 11 PU
Convolution 256x256 7 PU
Up Sampling 256x256 1 PU
Convolution 512x512 13 PU
Convolution 512x512 10 PU
Up Sampling 512x512 1 PU
Convolution 1024x1024 14 PU
Up Sampling 1024x1024 1 PU
Convolution 2048x2048 14 PU
Convolution 2048x2048 9 PU
Convolution 2048x2048 9 PU
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Test results

- Matched craters shows good uniformity
displacement in FOV

- Using HW implementation it is possible to

detected craters in high number also on low - : ad .
altitude Figure 1: SW edges (left hand image),

HW edges (right hand image)
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Conclusions

- Crater detection and Crater matching have been implemented and validated by means of HW acceleration
technique;

- The HW implementation of the Deep Learning Neural Network on FPGA was similar behavior with respect
to the SW implementation;

- The HW implementation is done using fixed16, fixed point arithmetic, and the SW implementation have
been developed on float32, floating point arithmetic;

- The HW implementation has subpixel accuracy on center and radius estimation in image frame;
- The AITAG scenario is under development

- The design of the deep learning implementation is done using the Processing Units which maximize the
flexibility for future implementations.
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