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Abstract

This paper leverages the measurement likelihood ratio for electro-optical low SNR problem to motivate
the use of target likelihood ratio recursion for detecting and tracking dim objects. A novel intensity
marginalized likelihood ratio is proposed, which allows for simultaneous detection of low SNR targets
in the entire surveillance region. This allows for quick computation of the probability of existence for all
targets and any object with a probability of existence greater than a chosen threshold are handed-off
to an image-based Multi-Bernoulli filter for track maintenance. This proposed method is implemented
and tested on real data of Apophis asteroid and 2020 SO, which was initially cataloged as a NEO by
the Minor Planet Center. In the 2020 SO dataset, the proposed filter was able to detect 5 more other
objects than expected ††. A follow-on journal paper will discuss the exact implementation details for
computing the intensity marginalized likelihood function in real-time as well as rigorously compare the
performance of the proposed method to other widely used low SNR detection algorithms.
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1. Introduction

Traditional approaches for discovering Near-Earth Objects (NEOs) include a moving target indicator
approach which involves identifying objects that move relative to the background stars in a sequence of
optical images [1]. Automated software pipelines on major optical CCD surveys such as Pan-STARRS
and Catalina Sky Survey (CSS) can produce tracklets of known and unknown asteroids in near real-time.
Recently, these methods have been extended for detecting and tracking multiple-objects simultaneously
[2]. These methods, which are characterized as Detect-before-Track, perform well when the apparent
magnitude of the object of interest is sufficiently high compared to the noise floor and the limiting mag-
nitude of the instrument. As the planetary defense community seeks to catalog dimmer NEOs over
time, these methods are no longer sufficient as individual images of the object do not contain enough
signal that can be extracted (typically under SNR 2), resulting in a miss-detection. This motivates the
development of Track-before-Detect methods [3], [4], [5] in which all the data collected, including the
pixel values, is used to simultaneously detect and track the objects as opposed to detecting the objects
first by a thresholding approach.

In 2014, Shao et. al popularized the method of synthetic tracking for detecting NEOs. This well-
established method, which has classically been used by NEO community, relies on acquiring many
subsequent short exposures of a NEO of interest, thereby “freezing” their motion in an individual image
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[6]. An appropriate velocity vector is then computationally searched for by shifting successive frames
relative to each other and then co-adding the shifted frames to create a long-exposure image as if a tele-
scope were tracking the object. This method significantly decreases the losses due to a longer streaked
image of the NEO since all of the signal is synthetically collected in a few pixels hence increasing the
photometric signal-to-noise ratio (SNR) of the object. This batch-processing approach performs well if
all of the images that are shifted-and-stacked contain some signal from the object, which is definitely
not guaranteed during blind detection of NEOs.

In this paper, the problem of detecting low SNR NEOs is formulated using a Bayesian approach
in which the position, velocity as well as the intensity of the NEO is estimated sequentially. A novel
intensity-marginalized likelihood function is introduced as an effective “detector” that allows for comput-
ing and updating the probability of existence of a NEO as more data is collected. This approach also
leverages Finite Set Statistics based Multi-Bernoulli filter to jointly detect and track multiple NEOs as
well as model the birth and death (or appearance and disappearance) of NEOs in images. In blind
detection and discovery of new NEOs, this becomes crucial since the position and velocities of new
objects are not known a priori. The contributions from this paper are to introduce sequential detec-
tion and tracking of low SNR NEOs using intensity-marginalized likelihood function as well demonstrate
the results on real data of Apophis and Centaur R/B 2020 SO using ground-based optical telescope
observations collected by the Lunar and Planetary Laboratory at University of Arizona.

2. Theory

The theory discussed in this section was initially introduced by the authors in [7], but is summarized
here for completeness. This section begins by describing the dynamics and measurement model of
targets in electro-optical images for the low SNR detection and tracking problem. Then, the measure-
ment likelihood function is to motivate the target likelihood ratio based recursion. The Bayesian filtering
prediction and update equations are then transformed into likelihood ratio recursion. Additionally, an
intensity marginalized likelihood ratio is introduced along with maximum likelihood estimate for intensity.

2.1. Dynamics Model
Consider a target of an unknown brightness/intensity moving in the x − y image plane. The discrete

dynamics of the target can be modeled as follows:

xk+1 = fk (xk, vk) (1)

where k denotes the time index, vk is the discrete-time process noise, xk ∈ R5 is the target state vector
defined as follows

xk =
[
xk yk ẋk ẏk Ik

]T
(2)

Here the surveillance region is defined by the image and therefore (xk, yk) denote the position of the
target in pixel space, (ẋk, ẏk) denote the velocity of the target in pixel space, and Ik denotes the target
brightness/intensity in pixel counts. Additionally, if the target disappears from the surveillance region,
it has a null state represented by φ. This is done to explicitly model the birth and death process. For
convenience, also define the target’s kinematic states as

x̃k =
[
xk yk ẋk ẏk

]T
(3)

It is important to note that given the dynamics along with the statistics of the process noise is equivalent
to knowing the transition density, p(xk+1|xk). For additional information, see [8].

2.2. Measurement Model
The data collected are sequences of two-dimensional optical images of the surveillance region, in

which each frame consists of n × m pixels of size ∆x × ∆y. Let (i, j) 1 ≤ i ≤ n, 1 ≤ j ≤ m denote
the location of the center of each pixel. Additionally, let yk =

{
y(i, j)

k : i = 1, . . . , n, j = 1, . . . ,m
}

denote
the image observation received at time k and Y1:k = {yb, b = 1, . . . , k} denote the set of measurements
received up until time k. The intensity measured in pixel (i, j) can be modeled as follows:

y(i, j)
k =


h(i, j)

k (xk) + w(i, j)
k if target present

w(i, j)
k if target absent

(4)
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where h(i, j)
k (xk) denotes the intensity in the pixel (i, j) contributed by a target with state xk, w(i, j)

k is the
measurement noise in pixel (i, j). In other words, the measurement received in a pixel will contain some
signal + noise if a target exists, but only noise if no target exists. For this discussion, the noise is
assumed to be Gaussian, i.e. w(i, j)

k ∼ N
(
0, σ2

)
. It is also important to note that unresolved imagery of

space objects typically contains sky background and bright stars and are assumed to be removed from
the image before detecting low SNR targets. This pre-processing step is discussed in detail in [9].

In the case of unresolved imagery, a target appears as a point source in the image and the photons
from it are dispersed based on the point spread function (PSF) of the imaging system. This PSF is often
approximated as a two-dimensional Gaussian function with circular symmetry and the expected signal
in each pixel, h(i, j)

k (x(k)), is the integral of the PSF over the pixel (i, j) [3]. Therefore, the pixel intensity in
(i, j) contributed by a target at position (xk, yk) with intensity Ik is

h(i, j)
k (xk) ≈

∆x∆yIk

2πΣ2 exp
[
−

(i∆x − xk)2 + ( j∆y − yk)2

2Σ2

]
(5)

where Σ is the blur factor, which is a function of the optics and seeing conditions and is assumed to be
known. This is often estimated from stars within the image that are properly sampled. Several classical
methods already exist to perform this step [10]. The results in this paper use Maximum Likelihood
Estimation (MLE) to fit the PSF profile and the details will be discussed in a follow-on journal paper.
Additionally, for convenience, also define the intensity normalized pixel contribution as

h̃(i, j)
k (x̃k) =

∆x∆y

2πΣ2 exp
[
−

(i∆x − xk)2 + ( j∆y − yk)2

2Σ2

]
h(i, j)

k (xk) = Ik · h̃
(i, j)
k (x̃k)

(6)

Since we asssumed that a target appears as a two-dimensional circularly symmetric Gaussian function,
it is evident from Eq. (5) that the pixel intensity contribution is only a function of the target’s intensity
and its positional states, (xk, yk) but not its velocity states. If the targets are moving fast relative to the
sensor, then this assumption is no longer valid.

2.3. Measurement Likelihood Ratio
Since the measurement noise from pixel-to-pixel is assumed independent, the likelihood for the

entire image at time tk can be computed by the product of the individual pixel likelihoods. However, the
individual pixel likelihood depends on whether a target exists in its vicinity or not. Hence, using Eq. (4),
the measurement likelihood can be written as

p
(
y(i, j)

k

∣∣∣∣ xk

)
= N

(
y(i, j)

k ; h(i, j)
k , σ2

)
(if a target is in vicinity of pixel (i, j))

p
(
y(i, j)

k

∣∣∣∣ φk

)
= N

(
y(i, j)

k ; 0, σ2
)

(if no target is in vicinity of pixel (i, j))
(7)

If the measurement likelihood is to be computed for a pixel (i, j) that is far from the target’s hypothesized
position (xk, yk), then the target’s intensity contribution, i.e. h(i, j)

k will approach zero. Therefore, it is trivial
to see that the existence of a target will only affect the measurement likelihood in the pixels that are
close to the target’s state. Let Cx(xk) = { j : ‖ j∆x − xk‖ ≤ r} and Cy(xk) =

{
i :

∥∥∥i∆y − yk

∥∥∥ ≤ r
}

define the
vicinity around a target with state xk of distance r, which is a user defined parameter based on the
known PSF of the optics and seeing condition. Therefore, the total likelihood for the entire image at time
tk can be written as:

p(yk |xk) =
∏

i∈Cy(xk)

∏
j∈Cx(xk)

p
(
y(i, j)

k

∣∣∣∣ xk

) ∏
i<Cy(xk)

∏
j<Cx(xk)

p
(
y(i, j)

k

∣∣∣∣ φk

)
(8)

This equation can be further simplified as follows:

p(yk |xk) =
∏

i∈Cy(xk)

∏
j∈Cx(xk)

p
(
y(i, j)

k |xk

)
p
(
y(i, j)

k |φk

)︸       ︷︷       ︸
l
(
y(i, j)

k |xk

)

n∏
i=1

m∏
j=1

p
(
y(i, j)

k

∣∣∣∣ φk

)
︸                  ︷︷                  ︸

p(yk |φk)

(9)
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In Bayesian framework, the update equation has a normalizing constant in the denominator as shown
in Eq. (12). Hence, the measurement likelihood is only required to be known up to a proportionality
constant. We can leverage this property and define the first term in the above equation as the pixel-
wise measurement likelihood ratio which only depends on the vicinity of the hypothesized target state
as l

(
y(i, j)

k |xk

)
. Therefore, the measurement likelihood up to a proportionality constant is related to the

measurement likelihood ratio as p(yk |xk) ∝ p(yk |xk)
p(yk |φk) = l(yk |xk) and simplifying gives:

l(yk |xk) =
∏

i∈Cy(xk)

∏
j∈Cx(xk)

p
(
y(i, j)

k

∣∣∣∣ xk

)
p
(
y(i, j)

k

∣∣∣∣ φk

) = exp

− 1
2σ2

 ∑
i∈Cy(xk)

∑
j∈Cx(xk)

h(i, j)
k (xk)

(
h(i, j)

k (xk) − 2y(i, j)
k

)
 (10)

This measurement likelihood ratio is convenient since it only depends on the pixels in the vicinity of
the target state. This property is crucial in extending this method for multi-target tracking under the
assumption that no two target PSFs overlap. Additionally, since Bayesian recursion only requires the
measurement likelihood to be known up to a proportionality constant, this measurement likelihood ratio
allows us to incorporate the data into the filter without having to compute the actual likelihood. This also
motivates the reformulation of the Bayesian recursion in terms of the target likelihood ratio density as
opposed to computing both the posterior target and null pdfs.

2.4. Bayesian Estimation of Low SNR Target
In the Bayesian framework, the objective is to compute the posterior pdf at time k+1, i.e. p(xk+1|Y1:k+1),

given the posterior at time k, i.e. p(xk |Y1:k), and the measurement received, yk+1. This recursive esti-
mation generally involves using the Chapman-Kolmogorov equation to compute the predicted posterior
pdf for a discrete dynamical system with a known transition density, p(xk+1|xk), and incorporating the
measurements to compute the posterior using Bayes’ rule, as shown below:

p(xk+1|Y1:k) =

∫
X

p(xk+1|xk) p(xk |Y1:k) dxk (11)

p(xk+1|Y1:k) =
p(yk+1|xk+1) p(xk+1|Y1:k)∫

X

p(yk+1|xk+1) p(xk+1|Y1:k) dxk+1
(12)

2.4.1. Prediction and Update Equations for Target Likelihood Ratio
However, for general single/multi-target tracking, the target can appear into the surveillance region

or target state-space, X and disappear, i.e. the birth and death processes [11]. If the target disappears,
its state is not defined and we can denote it using the null state, φ, and we augment it to the target
state-space: X ∪ φ. Accounting for the null state, the prediction equation, Eq. (11), becomes

p(xk+1|Y1:k) =

∫
X

p(xk+1|xk) p(xk |Y1:k) dxk + p(xk+1|φk) p(φk |Y1:k) (13)

p(φk+1|Y1:k) =

∫
X

p(φk+1|xk) p(xk |Y1:k) dxk + p(φk+1|φk) p(φk |Y1:k) (14)

where p(xk+1|φk) and p(φk+1|xk) represent the birth and death of a target, respectively. If birth and death
processes are modeled such that null state probability does not change [11], i.e. the probability mass
exchange to and from φ and X is balanced, the predicted null state probability integral simplifies to

p(φk+1|Y1:k) = p(φk |Y1:k) (15)

Instead of keeping track of the target null state pdf, it is more convenient to compute the ratio of the
target state pdf to the null state pdf, i.e. let the target likelihood ratio density be defined as

Λ(xk |·) =
p(xk |·)
p(φ|·)

(16)

Note that Λ(xk+1|Y1:k) and Λ(xk+1|Y1:k+1) denote the predicted and posterior likelihood ratio densities,
respectively. Also note that the this target likelihood ratio density is different than the measurement
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likelihood ratio, which is defined in Eq. (10). Substituting the target likelihood ratio in the prediction
equation and rewriting the predicted target likelihood ratio at tk+1 in terms of the posterior target likelihood
ratio at tk results in

Λ(xk+1|Y1:k) =
p(xk+1|Y1:k)
p(φk+1|Y1:k)

=

∫
X

p(xk+1|xk) Λ(xk |Y1:k) dxk + p(xk+1|φk) (17)

Similarly, accounting for the null state in the Bayesian update equation (12) and rewriting them using
the target likelihood ratio gives

Λ(xk+1|Y1:k+1) = l(yk+1|xk+1) Λ(xk+1|Y1:k) (18)

Therefore, the Bayesian recursion shown in Eqs. (11) and (12) reformulated in terms of target likelihood
ratio densities becomes as follows:

Λ(xk+1|Y1:k) =

∫
X

p(xk+1|xk) Λ(xk |Y1:k) dxk + p(xk+1|φk) (19)

Λ(xk+1|Y1:k+1) = l(yk+1|xk+1) Λ(xk+1|Y1:k) (20)

For more details, see [7]. Several sensors have multiple detectors that scan a region of the sky. In these
instances, the total measurement likelihood ratio is just the product of the measurement likelihood ratio
of the individual images from different detector, after being aligned using the celestial coordinates.

2.5. Intensity Marginalized Likelihood Ratio
An important property to note from Eq. (10) is that the likelihood ratio depends on both the target’s

position as well as the intensity. Using the intensity as a state in the filter adds another dimension to the
states space, which can become computationally intensive. Additionally, it is difficult to jointly detect &
track a low SNR target and estimate its brightness, especially for multiple targets in a wide field-of-view.
To circumvent this problem, the target intensity can be marginalized, resulting in a likelihood ratio that
only depends on the kinematic states of the target. By definition, based on Eq. (3), l ( yk | xk) = l ( yk | x̃k, Ik)
This results in

l ( yk | x̃k) =

∫
I

l ( yk | xk) · p(Ik |x̃k) dIk (21)

Typically, the target intensity is not modeled as a function of the kinematic states. However, one could
choose to do so based on the application. The general problem deals with detecting targets between
two bounds of SNR, which does not depend on where the target is located in the surveillance region.
Hence, the pdf of the intensity can be considered to be independent of the target’s kinematic states, i.e.
p(Ik |x̃k) = p(Ik). The target intensity can also vary significantly between frames, especially for a low SNR
object. Instead of choosing to model the intensity as a Markov process, this paper assumes a uniform
distribution, i.e.

p(Ik) =


1

Imax − Imin
, Imin ≤ Ik ≤ Imax

0, otherwise
(22)

Therefore, computing the integral results in the intensity marginalized likelihood ratio as follows:

l ( yk | x̃k) =
1

Imax − Imin

∫ Imax

Imin

exp

− 1
2σ2

 ∑
i∈Cy(xk)

∑
j∈Cx(xk)

h(i, j)
k (xk)

(
h(i, j)

k (xk) − 2y(i, j)
k

)
dIk (23)

= Ω3 (x̃k, yk)

er f

2ImaxΩ2 (x̃k) −Ω1 (x̃k, yk)√
8σ2Ω2 (x̃k)

 − er f

2IminΩ2 (x̃k) −Ω1 (x̃k, yk)√
8σ2Ω2 (x̃k)

 (24)

where

Ω1 (x̃k, yk) =
∑

i∈Cy(x̃k)

∑
j∈Cx(x̃k)

2y(i, j)
k · h̃(i, j)

k (x̃k) (25)

Ω2 (x̃k) =
∑

i∈Cy(x̃k)

∑
j∈Cx(x̃k)

(
h̃(i, j)

k (x̃k)
)2

(26)

Ω3 (x̃k, yk) =

√
πσ2

(Imax − Imin)
√

2Ω2 (x̃k)
exp


[
Ω1 (x̃k, yk)

]2

8σ2Ω2 (x̃k)

 (27)
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This equation can then be used to compute the intensity marginalized likelihood ratio for an image yk

given a hypothesized target’s kinematic state x̃k. This equation might seem difficult to compute in real-
time since it only allows for calculating the measurement likelihood ratio for each hypothesized target
state x̃k. However, careful implementation results in fast real-time computation of this likelihood ratio for
the states in the surveillance region. Exact implementation details will also be further discussed in the
follow-on journal paper.

2.6. Maximum Likelihood Estimate for Intensity
Since the new likelihood is based on marginalization of the target intensity, it is crucial to compute

the intensity that maximizes the likelihood so as to pass the tracks to the MBF. This can easily be done
using maximum likelihood estimation (MLE). It is important to note that the maximum likelihood estimate
for the intensity is derived from the intensity based likelihood function shown in Eq. (10). The authors
have previously shown in [7] that

Îk = argmax
Ik

l ( yk | xk) =

∑
i∈Cy(x̃k)

∑
j∈Cx(x̃k)

y(i, j)
k · h̃(i, j)

k (x̃k)

∑
i∈Cy(x̃k)

∑
j∈Cx(x̃k)

(
h̃(i, j)

k (x̃k)
)2 (28)

From Eq. (28), an interesting property to note is that the maximum likelihood estimate for the intensity
only depends on the pixel measurements and the blur factor - it does not directly depend on the statistics
of the background noise.

3. Approach

This section discusses the overall approach that is used in this paper to detect low SNR objects.
As noted earlier, to properly use the method proposed, it is crucial that the data is pre-processed such
that the noise in the images is of known statistics (close to zero mean and known standard deviation).
Typically, the sensor has hot pixels and bias, which can be removed using dark frame subtraction.
Additionally, the variations in pixel-to-pixel sensitivity of the detector can also be mitigated using flat
field correction. The sky brightness in ground-based sensors varies in an image which causes a bias in
the pixel measurements. It must be estimated and subtracted as significantly affects the photometry of
the objects. The success of the pre-processing step can be confirmed using the image histogram, as
will be shown in the next section.

Once these effects are mitigated, the image only contains noise with known statistics and signals
from point sources, including stars. It is not required to subtract the stars from the frame before detecting
low SNR targets. However, it is important to note that this will result in many “detections,” as stars are
typically much brighter than the targets, which in turn increases the run-time significantly. To perform
star subtraction, bright objects in the image are detected and compared against the Gaia DR2 Star
catalog [12], [13]. This process is done using the widely popular open-source code, Astrometry.net [14].

The detected objects in the images are then associated with stars in the catalog to compute the
inertial bearings, which is crucial for determining the right ascension and declination for the objects of
interest. Additionally, the wind can cause the telescope to jitter while the data is being taken. Since
this jitter is not explicitly modeled in the target dynamics, it is important that the frames in the sequence
are registered to the inertial frame. To accomplish this task, the images are aligned by registering the
detected stars from one frame to the subsequent frame. The pixels corresponding to the stars are also
used to fit PSF using a MLE method. Alternatively, one could also use the traditional DAOPHOT method,
which is widely used in the astronomy community [10]. The bright stars can also be removed from the
image by simply masking out the associated pixels or iteratively subtracting the estimated signal from
the stars.

The data is now pre-processed to correct for bias, pixel variation, sky background, stars, and tele-
scope jitter due to the wind. Once the point-spread function is estimated, the data can then be used with
the proposed method to detect and track low SNR objects. The likelihood ratio recursion along with the
intensity marginalized likelihood ratio can be implemented in a particle-filter based framework. However,
FiSSt based methodologies are more appropriate since they are inherently designed to track multiple
targets [5]. These methods are typically robust and allow for modeling target dynamics of choice. How-
ever, they suffer from curse of dimensionality due to the particle-based implementations. Specifically,
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the ability to detect low SNR targets heavily depends on the birth model. Since the targets can ap-
pear anywhere in the frame, this can be a quite expensive computation, especially for blind detection of
targets using a wide field-of-view sensor.

As it was shown in the previous section, the intensity marginalized likelihood ratio only depends
on the position of the targets in the surveillance region. This property can be leveraged to discretize
the position states in the surveillance region and compute the intensity marginalized likelihood ratio in
parallel. This essentially becomes a point-mass filter implementation of the likelihood ratio recursion,
which allows for quick identification of possible targets. Any target track in the surveillance region with a
likelihood ratio above a set threshold can then be passed to a Multi-Bernoulli Filter operating on image
data. Ultimately, this methodology allows the point-mass filter to act as a temporary detector for the full
Multi-Bernoulli filter. Therefore, under the assumptions made in this paper, the computational efficiency
of the likelihood recursion is combined with the sensitivity of the Multi-Bernoulli filter giving a real-time
implementation.

4. Results

The proposed method is tested on real dataset from Apophis asteroid and 2020 SO, Centaur R/B
from Surveyor 2 mission that was initially cataloged as a NEO by the Minor Planet Center. The data
sequences were collected by the Lunar and Planetary Lab at the University of Arizona.

4.1. Results on Apophis Asteroid Data
The images of the asteroid were collected during its closest approach on March 6th 2021 beginning

at 03:23 UTC. The data was collected using a 0.5 m telescope and a FLI CCD sensor. Due to the
asteroid’s size and distance at the approach, the asteroid was very bright. Hence, 100 frames were
taken with 0.5 second exposures to mimic a low SNR object. However, the object’s photometric SNR
was still ∼ 3 in each frame. Additional noise was added in post-processing until the photometric SNR
was below 1.4.

As discussed, the raw frames were processed by subtracting the dark frames and calibrating by
using flat field correction. Since the exposure time was 0.5 seconds, the jitter in the telescope was
quite noticeable. So the stars were detected, registered to the Gaia DR2 catalog, and used to align the
frames to remove the telescope jitter due to the wind. Pixels associated with properly sampled stars
were also used to fit the point spread function. Then the pixels associated with the stars were removed
from the images.

Figure 1 shows a raw image from the dataset along with the histogram. Note that the histogram is not
zero mean. Figure 2 shows the same image after correcting for dark frame, flat fields, sky background,
and telescope jitter. Additionally, stars are removed and noise is added to decrease the photometric
SNR below 1.4. The histogram shows a zero-mean image with higher standard deviation for the noise
compared to the raw frame. Overlayed on the image is the (x, y) position estimate from the proposed
filter.

Figure 3 shows the estimated probability of existence of the target for all the frames. The target
was detected with a probability of existence > 0.9 at frame 5. After that frame, the filter sequentially
maintains the track and tries to predict the death or disappearance of the target. Since the asteroid is
present in all the images, the filter is expected to maintain the track with a probability of 1. However, due
to the added noise in the frame, the probability of existence drops if the data at a particular time does
not provide enough evidence to support the existence of a target at the predicted location.

4.2. Results on 2020 SO Data
After the 2020 SO was first detected by Pan-STARRS 1 in September 2020, the Minor Planet Center

maintained its track. However, the object became too dim to be observable due to its vicinity around
the Moon in October 2020. The Lunar and Planetary Lab at University of Arizona tracked the object
and collected a sequence of 85 images on October 23 2020 beginning at 04:46 UTC. Since the object
was quite dim, 60 second exposures were taken by centering the telescope boresight at the predicted
2020 SO location from the MPC track. Since the target was near the Moon in angular space, the sky
background changed significantly over the dataset. To illustrate this, Figure 4 and 5 show the first and
last frames from the raw dataset, respectively, with the same limits on the histogram 4.

4A video of the results can be accessed at shez.space/pdc2021
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Figure 1: Apophis Dataset: Raw Image with Histogram [0.5s exposure].

Figure 2: Apophis Dataset: Processed Image with Tracklet & Histogram [0.5s exposure].

The pre-processing step as described in the Approach section was performed on the entire dataset.
Since the object was expected to have an apparent magnitude > 21, it was crucial to remove all the
sources corresponding to the stars. The images in the entire dataset were aligned and summed to-
gether to create a long exposure of the stars. The stars in this summed frame were then associated
with the Gaia DR2 catalog as shown in Figure 6. The red markers indicate the stars that were success-
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Figure 3: Apophis Dataset: Estimated Probability of Existence vs Time Index.

fully detected in the image and associated with stars in Gaia DR2 catalog. The dimmest star that was
detected and identified had a magnitude of 21.02. However, some of the dimmer stars that were de-
tected were not present in the star catalog. Therefore, a mask to subtract the stars was created based
on the summed frame as opposed to removing only the stars that were associated with the star catalog.

The processed data was then used with the proposed filter and all objects with an estimated prob-
ability of existence greater than 0.85 were considered a detection. Even though the goal was to detect
2020 SO, the proposed filter was able to detect 5 other objects as shown in Figure 7. The position
estimates for each object is shown using a green square marker along with an object ID number. Note
that the 2020 SO corresponds to object number 2. The arrows indicate the approximate direction of the
velocity vectors. Figure 8 shows sum of the 85 sub-frames shifted and added for each object based on
its estimated position and velocity. This is shown to confirm the detections of the objects 5

Figure 4: 2020 SO Dataset: Raw Frame 01 [60 sec exposure].

5A video of the results can be accessed at shez.space/pdc2021
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Figure 5: 2020 SO Dataset: Raw Frame 85 [60 sec exposure].

Figure 6: 2020 SO Dataset: Summed Frame with Associated Stars from Gaia DR2.
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Figure 7: 2020 SO Dataset: Track Estimates from Filter. 2020 SO corresponds to object number 2.

Figure 8: 2020 SO Dataset: Object sub-frames shifted-and-added to confirm detection
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5. Conclusion

This paper formulates the detection and tracking problem for low SNR NEOs using Bayesian ap-
proach. The measurement likelihood function is leveraged to motivate the use of target likelihood ratio
recursion for detecting and tracking dim objects. To overcome the difficulty of jointly estimating the
object’s intensity along with its kinematic states, a novel intensity-marginalized likelihood ratio is pro-
posed. This allows for simultaneous detection of all low SNR targets in the surveillance region as
well as estimate their probability of existence. Any object with an existence probability greater than a
chosen threshold are handed-off to an image-based Multi-Bernoulli filter for track maintenance. This
proposed method is implemented and tested on real data of Apophis asteroid and 2020 SO. In the
2020 SO dataset, the proposed filter was successfully able to detect 5 objects other than 2020 SO
itself 6. A follow-on journal paper will discuss the exact implementation details for computing the inten-
sity marginalized likelihood function in real-time as well as rigorously compare the performance of the
proposed method to other widely used low SNR detection algorithms.
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