Changing the heliocentric orbit of the Didymos system with DART

Rahil Makadia¹, Siegfried Eggl^{1,2,3}, Gene Fahnestock⁴, Steve Chesley⁴, Davide Farnocchia⁴, Nian Tong²

¹ University of Illinois at Urbana-Champaign, Urbana, IL, USA

² University of Washington, Seattle, WA, USA

³ Vera C. Rubin Observatory, Tucson, AZ, USA

⁴ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Introduction

- DART impact can be considered to deliver momentum to Didymos system barycenter
- Ejecta modeled as additional effective impulses when crossing Hill sphere

$$\beta_{helio} = 1 + \frac{\|m_{ejecta}\vec{v}_{ejecta}\|}{\|m_{DART}\vec{v}_{DART}\|} = 1.84$$

(from one JPL ejecta dynamics simulation over wide parameter space)

Ejecta Overview

IAA PDC 2021 - Makadia et al.

NASA

20-Oct-2062 Close Approach

NASA

20-Oct-2062 Close Approach

Case	Total Deflection w.r.t Nominal (km)
DART s/c only	56
DART s/c + ejecta	93
$\beta_{helio} = 1.84$	103

04-Nov-2123 Close Approach

NASA

04-Nov-2123 Close Approach

Conclusion

- DART changes Didymos close approach distances to Earth
 - October 2062 approx. 90 km
 - November 2123 approx. 60 km
- Modeling DART with multiple ejecta impulses differs from a single impulse
 - Ejecta keep leaving the Didymos system for up to 60 days after DART impact
 - Difference in the B-plane of 6-10 km
- This difference could be significant for modeling of future deflection missions
 - On the order of keyhole sizes for other potentially hazardous asteroids (e.g., Bennu)

