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Abstract 

This research aims to significantly advance the understanding of crack stress thresholds in rocks by 
utilizing intelligent and statistical methodologies applied to a comprehensive database of granitic 
rocks. The database includes essential mechanical parameters, such as crack initiation stress and crack 
damage stress, as outputs, and unconfined compressive stress, Young's modulus, and Poisson's ratio as 
inputs. The study employs multivariate regression analysis (MRA), Decision tree (DT), and artificial 
neural network (ANN) techniques to analyze the data. To assess and compare the performance of these 
models, various metrics are used, including root-mean-square error (RMSE), mean absolute error 
(MAE), coefficient of determination (R²), mean absolute percent error (MAPE) and the a20-index. The 
findings reveal that the ANN method surpasses MRA-based and decision tree regression-based 
approaches in accurately predicting the output parameters. The ANN model demonstrates outstanding 
predictive performance for σci, achieving an R²=0.934, RMSE=5.965, MAE=4.79, MAPE=5.3% and 
VAF=93.34%. Similarly, the model excels in predicting σcd with an R²=0.985, RMSE=4.676, 
MAE=3.785, MAPE=2.3%, VAF=98.4%, Additionally, sensitivity analysis identifies unconfined 
Compressive stress (UCS) as the most critical factor in predicting crack initiation stress (σci) and crack 
damage stress (σcd). The findings suggest that the ANN model is more effective in predicting σci and 
σcd of rocks compared to other methods. 
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1  Introduction 
A comprehensive understanding of the spatial distribution of various cracks within rock masses is 
crucial not only for advancing the fundamental study of rock failure mechanisms but also as an 
essential tool for assessing geotechnical risks. Previous research extensively examined the formation 
and distribution of crack patterns by analyzing the failure characteristics of different crack types. 
Scholars identified distinct parameters associated with various crack types using specific tests, such as 
the uniaxial compression test (Vásárhelyi, 2000), the Brazilian splitting test (Chang et al., 2020), and 
the three-point bend fracture test (Rozière et al., 2007). These tests provided valuable insights into the 
behavior and development of cracks under different stress conditions. 

The essential characteristic stress thresholds in the failure process are the crack initiation stress (σci) 
and the crack damage stress (σcd). While crack initiation denotes the beginning of micro-fracturing, 
crack damage denotes the beginning of crack coalescence and dilatation deformation (volumetric 
strain).  

There is a limited amount of research focused on the relationship between rock properties and 
crack stress thresholds. However, it is suggested that the crack initiation stress (σci) is a reliable 
indicator for predicting both crack initiation and damage stress levels. Despite this, no significant 
correlations have been found between crack stress thresholds and the stiffness properties of rocks, 
highlighting a gap in understanding these interactions (Pepe et al., 2018); Although, Narimani et al. 
(2023) introduced a new approach to calculate the elastic stiffness parameters of granitic rocks from 
the crack closure phase up to the failure stage. This method provides a more detailed understanding of 
the variations in stiffness and Poisson’s ratio throughout the rock's loading process.  Many studies 
exist in the literature exploring the statistical relationships among the physical, mechanical, and 
ultrasonic properties of rocks. These studies aim to develop nondestructive testing solutions that 
facilitate quick and accurate predictions of specific parameters (Zhu et al. 2010; Kahraman 2001; 
Mutaz et al. 2021). 

Leveraging artificial intelligence (AI) and machine learning (ML) has opened new possibilities in 
the field of rock mechanics, particularly in predicting critical rock mechanical properties and 
thresholds related to rock damage. Despite the progress, using these advanced algorithms to estimate 
rock mechanical parameters from fundamental physical and ultrasonic rock properties is still in an 
emerging phase. The potential of AI and ML in this area could revolutionize traditional approaches, 
allowing for more accurate and efficient analyses compared to conventional methods. In recent 
research, Narimani (2024) applied various ML models to predict two key rock properties: unconfined 
compressive strength (UCS) and Young's modulus. By training these models on comprehensive 
laboratory data—including density, P-wave velocity, shear strength, and tensile strength 
measurements of granite—Narimani demonstrated that AI-driven techniques could offer accurate 
estimations of these properties. Shahani et al. (2022) employed ANFIS, artificial neural network 
(ANN), and MVLR methods to predict UCS weak rocks. Their study demonstrated the potential of 
these methods for accurately predicting rock strength properties. Several researchers and practitioners 
in geotechnical engineering have emphasized the potential of machine learning (ML) methods, such as 
decision trees (DTs) and artificial neural networks (ANNs) to predict key rock mechanical parameters. 
These ML techniques are being increasingly applied for enhanced accuracy in forecasting complex 
rock behavior, thereby aiding in more reliable geotechnical assessments and engineering decisions 
(Sharma, 2017; Wei et al. 2023). 

This paper seeks to evaluate the effectiveness of machine learning (ML) techniques in predicting 
crack stress thresholds by leveraging fundamental rock mechanical properties. The study is built on 
data obtained from laboratory tests conducted on granitic rocks, specifically drawing on the 
experimental work of Nicksiar (2012). The primary goal is to investigate how well ML models can 
estimate the critical stress levels at which cracks initiate and propagate, using input features such as 
uniaxial compressive strength, Young’s modulus, and Poisson’s ratio. By comparing ML predictions 
with empirical data, the study aims to determine whether machine learning can serve as a reliable 
method for forecasting crack behavior in rocks, thus offering a more advanced approach for 
geotechnical applications. 

2 Materials and Data analysis 
When intact rocks subjected to increasing stress, rocks undergo distinct deformation phases before 
failure, each characterized by different micro-mechanical processes, such as crack initiation, 
propagation, and coalescence. The process begins with Stage I, where existing microcracks and flaws 
within the rock close under increasing stress. In Stage II, the rock undergoes linear-elastic 
deformation, where the material deforms without permanent damage. As the load increases further, 
Stage III occurs, characterized by the formation and stable propagation of new cracks. During Stage 
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IV, these newly formed cracks grow in an unstable manner, leading to rapid damage accumulation. 
Finally, the rock reaches Stage V, where ultimate failure occurs, followed by a post-failure phase, 
indicating the complete breakdown of the material structure (Fig.1). 
 

 
Fig 1. Stress-Strain behaviour and crack propagation 

 in intact rocks. 

 

 

 

 

 

 

 

 

 
 

 
 
This research explores various foundational machine learning methods, including multi-linear 

regression, multi-non-linear regression, and step-wise regression models, as well as Artificial Neural 
Networks (ANN) and Decision Trees (DT), all implemented using MATLAB (2019). The 
investigation centers on experimental data from extensive laboratory testing on granitic rock 
specimens, largely derived from Nicksiar’s (2012) research. A dataset of 107 granitic rock samples 
was processed, with an 80% subset allocated for model training and the remaining 20% reserved for 
testing. Key performance metrics were calculated to assess each model’s accuracy in predicting stress 
thresholds. Descriptive statistical distribution of variables in the database and input and output 
parameters for generated model is summarized in Table 1. 

The primary research aim is to forecast two specific stress points in the granitic rocks: initial crack 
stress and damage crack stress. The models leverage fundamental material properties, including 
Uniaxial Compressive Strength (UCS), Elastic Modulus (E), and Poisson’s Ratio, to make predictions 
regarding these stress levels. Once the data was gathered, both qualitative and quantitative analyses 
were performed. The normal probability plot, a visual method, was used to assess whether the dataset 
followed a normal distribution. Figure 2 shows these plots for σci, σcd, UCS, E and ν values, which 
demonstrated no significant outliers and displayed symmetrical distributions. Furthermore, the 
Shapiro-Wilk test was conducted, returning a p-value greater than 0.1, suggesting the data did not 
significantly depart from normality. Importantly, this approach also allowed for estimating the 
distribution's location and scale parameters via the intercept and slope of the fitted line. 

The study examines the relationships between various parameters, including UCS, E, Poisson’s 
ratio, crack initiation stress, and crack damage stress, using both machine learning and statistical 
analysis. UCS, E, and Poisson's ratio are utilized as input variables to predict crack initiation and 
damage stresses. A correlation matrix is employed to analyze the variance and covariance in the 
regression model, helping to understand how the variables interact. Figures 3 illustrate the pairwise 
correlations among the input and output variables. These visualizations reveal positive, negative, or 
neutral relationships, highlighting how different variables influence one another. Stronger correlations 
indicate a greater impact on model accuracy and efficiency, enhancing the understanding of the inputs' 
effects on the outputs. 

 
Table 1 Descriptive statistics of generated database for this study. 

Variable No. Minimum Maximum Mean Std. deviation 

UCS (MPa) 107 125 371 209.4 44.496 

E (GPa) 107 37 86 72.53 6.951 

ν 107 0.12 0.29 0.20 0.035 

σci (MPa) 107 57 191 95.36 23.217 

σcd (MPa) 107 112 312 171.57 37.031 
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Fig. 2 Normal Probability of σci, σcd, UCS, E and ν values 

 

Fig. 3 Correlation matrix of inputs and outputs 

3 Results 

3.1 Multivariate Linear Regression (MLR) 

Multivariate Linear Regression (MLR) is an advanced extension of linear regression that uses 

empirical observations to derive a mathematical relationship between a dependent variable y and 

multiple independent variables x, along with an error term ε. The primary aim is to explore how the 

dependent variable is influenced by the predictors and compare MLR’s predictive capabilities with 

alternative machine learning methods. For instance, an MLR model involving two predictors can be 

expressed as follows (Tiryaki, 2008): 

Y= β0 + β1 × X1 + β2 × X2 + ε     (1) 

where β0 = intercept term; βn = coefficient term; ε = noise term; Xn = independent variables. Finally, 

two multiple linear regression equations were extracted for predicting σci and σcd: 
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σci (MPa) = -32.119 + 0.423*UCS + 0.506*E + 10.729*ν  (2) 

σcd (MPa) = -10.938 + 0.783*UCS + 0.265*E - 3.321*ν  (3) 

3.2 Decision Tree (DT) 

Decision Trees (DTs) are versatile tools used for classification and regression tasks. These non-

parametric supervised learning models operate by sequentially splitting data into subsets based on 

specific decision criteria, forming a tree-like structure of "if-then-else" rules. A well-constructed DT 

aligns closely with actual data, improving prediction accuracy as its depth increases. DTs are effective 

for analyzing both small and large datasets and are particularly useful for solving prediction problems. 

They offer a straightforward approach to understanding relationships between variables and 

identifying the most influential ones. By visualizing decisions as branches and outcomes as nodes, 

decision trees provide a clear breakdown of all possible scenarios and their implications. This 

structured method enables thorough exploration of alternatives, ensuring informed decision-making 

while mapping potential outcomes comprehensively. A simple schematic is shown in Figure 4. 

 

Fig. 4 Decision Tree schematic showing root node, decision nodes and leaf nodes. 

3.3 Neural Network Analysis 

An Artificial Neural Network (ANN) is a machine learning approach inspired by the structure and 

function of biological neural networks. It aims to establish direct relationships between input and 

output variables without relying on predefined assumptions. ANNs comprise three core elements: the 

transfer function, network architecture, and learning rule, which collectively address complex 

statistical problems (Figure 5). In this research, ANN computations were implemented using 

MATLAB's toolbox. Among various architectures, the Multilayer Perceptron (MLP) is one of the 

most widely used models in engineering. The MLP operates as a supervised learning system, utilizing 

backpropagation to adjust connection weights iteratively. This process enhances model accuracy by 

minimizing training errors and improving prediction performance. A three-layered MLP model 

structure was employed. For optimizing training, the Levenberg-Marquardt algorithm proved 

effective, particularly in scenarios requiring error minimization, such as with mean squared error or 

normalized squared error. This study assessed the ANN model's effectiveness by analyzing training 

and validation error metrics. 

 

Fig. 5 The structure of neural network. 
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3.4 Model Evaluation 

The dataset collected consisted of 107 data points related to the testing and evaluation of 

geomechanical properties, serving as the core foundation for validating the proposed methodology. 

The prediction accuracy for σci and σcd was evaluated using four standard statistical metrics: root mean 

square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and 

variance accounted for (VAF). These performance metrics are defined by Equations (4) to (7). 

RMSE= √
∑ (𝑝𝑖−𝑞𝑖)2𝑛

𝑖=1

𝑛
 (4) 

MAPE= 
1

𝑛
∑ |

𝑞𝑖−𝑝𝑖

𝑞𝑖
| × 100𝑛

𝑖=1  (5) 

MAE= 
∑ |𝑝𝑖−𝑞𝑖|𝑛

𝑖=1

n
 (6) 

VAF = [1- 
𝑣𝑎𝑟(𝑝𝑖−𝑞𝑖)

𝑣𝑎𝑟(𝑝𝑖)
] × 100 (7) 

In this context, 'n' represents the total experiment count, 'pi' and 'qi' denote the projected and 

expected findings for the ith experiment respectively. The ideal scenario is achieved when RMSE = 0, 

MAE = 0, MAPE = 0, VAF = 100. Tables 2 and 3 present the rankings, offering a numerical 

evaluation of σci and σcd. The results reveal that the MLR model, with a total score of 5, performed the 

poorest in predicting σci and σcd, consistently trailing behind the other models. In contrast, the DT 

model showed improved accuracy, securing the second position overall, while the ANN model 

emerged as the best-performing method, delivering the most accurate predictions. 

Table 2 Performance comparison of σci for all the models. 

Model R2 Score RSME Score MAE Score MAPE Score VAF 

(%) 

Score Rank 

MLR 0.782 1 10.660 1 8.540 1 0.093 1 78.72 1 5 

DT 0.853 2 9.002 2 7.346 2 0.082 2 84.84 2 10 

ANN 0.934 3 5.965 3 4.790 3 0.053 3 93.34 3 15 

 

Table 3 Performance comparison of σcd for all the models. 

Model R2 Score RSME Score MAE Score MAPE Score VAF 

(%) 

Score Rank 

MLR 0.924 1 10.129 1 8.078 1 0.049 1 92.45 1 5 

DT 0.957 2 7.813 2 6.388 2 0.039 2 95.52 2 10 

ANN 0.985 3 4.676 3 3.785 3 0.023 3 98.40 3 15 

Drawing from the findings presented in Table 2 and Table 3, it becomes clear that among the 

various empirical and artificial intelligence approaches, the Artificial Neural Network (ANN) model 

emerges as the most effective and reliable method for predicting the parameters σci and σcd. To 

visualize and compare the distinct performance levels of the models, graphs are provided in Figures 6 

and 7. These graphs include compressive prediction curves and regression diagrams, highlighting how 

empirical and artificial intelligence techniques perform in modeling the data. Examining Figure 6, the 

prediction curves of σci and σcd generated by all three models demonstrate a consistent alignment with 

the original data. However, the ANN model distinctly outshines the other methods, showcasing 

superior accuracy and reliability. Moving to Figure 7, the regression diagrams reveal a clear 

performance hierarchy. The ANN model achieves the highest coefficient of determination (R²), 



   Eurock 2025, Trondheim, Norway 

 

7 

 

recording values of 0.934 for σci and 0.985 for σcd. This exceptional accuracy highlights ANN's 

robustness in modeling complex data. Among the remaining models, the Decision Tree (DT) shows 

relatively good performance, surpassing the Multiple Linear Regression (MLR) model in predictive 

capability.  

  

Fig. 6 Comparison of the (a) σci and (b) σcd results predicted by the MLR, DT and ANN models with the actual ones. 

(a) (b) 

Fig. 7 Measured and predicted (a) σci and (b) σcd using MLR, DT and ANN model. 

 
 

Fig. 8 The impact of input variables on model outcomes, (a) σci and (b) σcd  

3.5 Sensitivity Analysis 
Sensitivity analysis identifies the influence of input variables in predictive models using linear and 

nonlinear techniques. The Cosine Amplitude Method (CAM) recently assessed the sensitivity of UCS, 

E, and ν, with CAM values close to 1 indicating high sensitivity. Results show UCS (0.98853) 

strongly impacts σci prediction, while E (0.98068) dominates σcd prediction (Figure 8). 

(a) (b) 

(a) (b) 
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4 Conclusions 

This research focused on the development of advanced intelligent predictive models specifically 

designed to estimate the crack stress thresholds (σci and σcd) in granitic rocks. To achieve this, a robust 

and detailed database was compiled, encompassing the mechanical properties of various types of 

granitic rocks through an extensive review of existing literature. Key parameters such as UCS, E and ν 

were identified and used as input variables in the modeling process. A range of machine learning (ML) 

algorithms, including Artificial Neural Networks (ANN), Decision Trees (DT), and the more 

traditional Multiple Linear Regression (MLR) techniques, were employed to construct the predictive 

models. The comparative analysis demonstrated that ANN significantly outperformed both DT and 

MLR, delivering superior accuracy and reliability in predicting the crack stress thresholds. This 

highlights the ANN model's ability to reduce uncertainties in rock engineering applications. The 

utilization of soft-computing models, such as ANN, brings several advantages, including 

computational efficiency and the elimination of the need for complex instrumentation. However, 

developing and validating these models often requires extensive datasets, a challenge exacerbated by 

the limited availability of geotechnical data. Despite this limitation, the findings of this study offer 

considerable potential to enhance geotechnical engineering practices.  
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