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Abstract 
The Cohesion Weakening Friction Strengthening (CWFS) approach is a robust continuum numerical 
modelling technique used to simulate the depth and shape of brittle failure around underground 

excavations. The CWFS method is based on the underlying mechanisms of the mobilization of shear 

strength components of rock, cohesion and friction, which change gradually as a function of plastic 
strain. In practice, it is often applied using deterministic parameters. However, given the inherent 

uncertainty associated with the variability and heterogeneity of rock properties, the strength 

parameters required to implement the CWFS approach for design purposes may be better characterized 
using a stochastic approach. In this paper, a Monte Carlo Simulation (MCS) was utilized to assess the 

CWFS parameters for the well-known Mine-by Experiment (MBE) at the Canadian Underground 

Research Laboratory (URL). The MCS was applied to the CWFS strength parameters using two 

different sets of statistical distributions. The first set consisted of uniform distributions, and the second 
included more complex distributions based on observed brittle rock parameters. The models were run 

for 10,000 iterations, after which the depth, area, and angle of failure were characterized and 

compiled. The results were then analysed and graphically synthesized to produce a probabilistic-based 
failure profile. It is shown that applying an MCS for the CWFS approach is not only viable, but also 

provides insight seldom revealed by deterministic methods. The results were also analysed to better 

understand the sensitivity of CWFS parameters by plotting correlations between model response (e.g., 

failure measurements) and input strength parameters. These results enable a more informed risk 
assessment of potential field conditions, allowing for improved risk management and ground support 

design. 
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1 Introduction 
The Cohesion Weakening Friction Strengthening (CWFS) approach is often used as a deterministic 

method to simulate brittle failure around underground excavations (Hajiabdolmajid et al. 2002; Gomez 

de Alba et al, 2024). However, rock strength characterization is more accurately described as a 
probabilistic endeavour. This paper proposes to use some probabilistic techniques in combination with 

the CWFS approach to develop a methodology that provides rock mechanics modellers with a better 

representation of ground response. This methodology can help engineers identify probabilistic 
scenarios relevant to their specific situations. To achieve this, the Monte Carlo Simulation (MCS) was 

applied alongside the CWFS method. The Mine-By Experiment (MBE) case scenario was used to test 

this approach with MCS, resulting in a more informative probabilistic failure profile and a 

corresponding probability of failure profile. These outcomes can be used for ground support design 
and risk assessment. The results can be further analysed to improve the understanding of the CWFS 

method itself. The correlation between the failure profile and input parameters were calculated to 

identify which parameters have the greatest impact on the results of the CWFS method. 

2 Background 
Predicting and simulating brittle rock failure around underground excavations is a challenging 
endeavour. Traditional strength characterization methods used for other types of failure, such as the 

Hoek-Brown failure criterion, cannot be directly applied to brittle rocks (Kaiser et al, 2000). To 

address this limitation, different techniques have been developed over the years. One of the most well-

established methods is the Cohesion Weakening Friction Strengthening approach. This method was 
first used by Hajiabdolmajid et al. (2002) and Hajiabdolmajid et al. (2003) to model brittle failure 

around underground excavations, building on the experimental findings of Martin and Chandler 

(1994) and the theoretical framework proposed by Martin (1997). The CWFS method is based on the 
principle that intact rock behaves as a fully cohesive material with negligible frictional resistance. In 

the field, the intact rock strength is primarily governed by its cohesion, which corresponds to the crack 

initiation strength (𝜎𝑐𝑖) of the rock. Once cracks initiate, the cohesion progressively decreases while 

friction increases. As normal stress continues to develop, friction further mobilizes until a fully 
frictional state is reached. These behaviours are strain-dependent, which is a critical aspect of the 

CWFS approach. This method is often used in continuum numerical programs that allow for strain-

dependent parameter evolution, such as FLAC2D and FLAC3D. Several key parameters are required to 

define the CWFS: cohesion is characterized by its peak (𝑐𝑝) and residual (𝑐𝑟) values, while friction is 

described by the initial (𝜙𝑖) and mobilized (𝜙𝑚) friction angles. There are critical plastic strain 

parameters that control the evolution of strength properties: one governs cohesion (𝑒𝑐
𝑝𝑠

) and another 

governs friction (𝑒𝜙
𝑝𝑠

). The dilation behaviour is also described by a dilation angle (𝜓). To facilitate 

the effective selection of these parameters, Walton (2019) developed a set of guidelines for the use of 

the CWFS method. 

3 Methodology 
To obtain a probabilistic representation of the failure profile around an underground excavation, an 

MCS was applied to a case study. The first step involved running n numerical models using the CWFS 

approach in FLAC2D with different probabilistic input parameters. The strength parameters were 
selected in two ways: first, by assuming a uniform distribution for all parameters, and second, by 

employing more complex distributions that correlate with field and laboratory observations of the 

rock. After running the models the results are stored and analysed. The failure profiles generated were 

then compared with field observations from the case study. The case study used in this analysis is the 
Mine-by Experiment (MBE) at the Underground Research Laboratory (URL) in Manitoba, Canada. 

The laboratory properties of rock are reported by Martin and Kaiser (1996) and Martin et al. (1997). 

3.1 Monte Carlo Simulation 
The Monte Carlo Simulation followed standard methodologies for geotechnical problems, as outlined 
by Martin and Christiansson (2009) and Hoek (2023). The MCS was executed in Python via FLAC2D’s 

integrated Python interface. The process begins with iteration i, where all input parameters of interest are 

randomized, within the specified ranges, using the NumPy library (Harris et al., 2020). These randomized 

parameters are then applied to the material model in the domain of interest in FLAC2D. The FLAC2D model 

runs until equilibrium is reached, after which all failure metrics and state of each zone are compiled and 
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stored in Python arrays. The Python script proceeds to the next iteration (i + 1), repeating the same process. 

For this research, 10,000 iterations were conducted for each MCS. Once all iterations were completed, the 

results were analyzed to create failure distributions and probability of failure profiles. 

3.2 Numerical model 
The numerical models were run in FLAC2D (v9.0.164). The model geometry is shown in Fig. 1. To 
reduce running computational time, the MBE was modelled as a quarter circle, leveraging symmetry 

to represent the full circle. The effects of this simplification should be negligible, as the behaviour of 

the boundaries should produce the expected symmetric response. The model dimensions are 20 m × 
20 m, with the excavation located at the bottom left corner of the model. The excavation is circular, 

with a radius of 1.75 m. Near the excavation boundary, there is a refined radial mesh with square 

zones of 2.5 cm × 2.5 cm adjacent to the boundary extending to 10 cm × 10 cm zones at 5 m from the 

centre of the excavation.  A coarse mesh exists from 5 m away from the centre of the excavation to the 
model extent at 20 m from the excavation. The left and bottom boundaries are rollers to recreate the 

symmetry, and the top and right boundaries are fixed.  

 
Fig. 1: Numerical model set up for the simulation of the MBE using the CWFS method and MCS 

The stresses are introduced to the model by initializing them in all zones and allowing the model to 
reach equilibrium prior to the removal of the excavation material. The stress regime is based on that 

described by Martin and Kaiser (1996), where 𝜎1 = 60 MPa, 𝜎2 = 45 MPa, and 𝜎3 = 11 MPa. The 

stresses were rotated to have 𝜎1 a plunge of 0° and 𝜎3 a plunge of 90°, while 𝜎2 is aligned with the 

direction of the excavation. The excavation was simulated using FLAC2D’s “zone relax” command to 
avoid dynamic loading from sudden removal of material. The material behavior was modelled using 

the Strain-Softening model to allow for strain-dependent evolution of the strength parameters. For the 

analysis of the results, the state of the zones was used as an indicator of instability. Any zone that has 

reached a failure state is regarded as instability in the area surrounding the excavation. 

3.3 Probability distributions 
In the MCS, certain parameters are treated as random variables, that can assume different values in each 
iteration. For this research, the parameters varied are 𝑐𝑝, 𝑐𝑟 , 𝜙𝑖, 𝜙𝑚, and 𝑒𝑐

𝑝𝑠
. Two MCS approaches 

were used: one where these parameters followed a uniform distribution (each value having an equal 
probability of occurrence), and another with more complex distributions based on rock behaviour 
observations. While some parameters were varied, others were treated as deterministic or dependent on 
other variables. This simplification reduces computational time and avoids numerical instability. The 
assumptions are as follows: the tensile strength (𝜎𝑡) was fixed at10 MPa for all iterations, the dilation 
angle (𝜓) followed an associated flow rule, meaning that it varies with 𝜙, and finally, 𝑒𝜙

𝑝𝑠 = 2 × 𝑒𝑐
𝑝𝑠

. 

3.3.1 Uniform distributions 

To first demonstrate the application of the MCS, a simple set of uniform distributions was used. The 

objective is to assess the capability of the CWFS method to be represented with probabilistic values 
and to provide a basic representation of the probability of failure. The parameter values were selected 

according to the guidelines provided by Walton (2019), the model calibration carried out by 

Hajiabdolmajid et al. (2002) and Hajiabdolmajid et al. (2003), and the sensitivity analyses conducted 
by Gomez de Alba (2024). The maximum and minimum values selected for the uniform distributions 

are summarized in Table 3-1. 
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Table 3-1 Uniform distributions input parameter ranges 

Parameter Minimum Maximum 

𝑐𝑝 (MPa) 39 61 

𝜙𝑖 (°) 0 10 

𝑒𝑐
𝑝𝑠

  0.001 0.003 

𝑐𝑟 (MPa) 7.5 30 

𝜙𝑚 (°) 47 60 

3.3.2 Non-uniform distributions 
The strength parameters for the CWFS method can also be represented using more complex, non-
uniform distributions, which would allow the input parameters to more closely approximate rock 
strength observations from laboratory experiments or field studies. 

The parameter 𝑐𝑝 is correlated with the crack initiation stress of the rock, which is typically assumed 
to be between 30% and 50% of the rock's UCS (Walton, 2019). Given that UCS from laboratory 
experiments is often normally distributed, the 𝑐𝑝 can also be assumed to follow a normal distribution. 
For the Lac du Bonnet (LdB) granite, the main rock unit in the MBE, the UCS has a Coefficient of 
Variation (COV) of 0.11 (Martin, 1993). Previous applications of the CWFS approach to model the 
MBE have shown that the 𝑐𝑝 value of 50 MPa provides the best fit to the failure profile in the field 
(Hajiabdolmajid et al., 2002, 2003). Based on these observations, 𝑐𝑝 is assumed to follow a normal 
distribution with a mean (𝜇) of 50 MPa and a standard deviation (𝜎) of 6 MPa. The parameter 𝑐𝑟  is 
abstract and hard-to-quantify or measure directly (Walton, 2019). Therefore, for this research, a 
uniform distribution is selected for 𝑐𝑟with a minimum value of 7.5 MPa and a maximum value of 30 
MPa. These values are based on a combination of the guidelines provided by Walton (2019) and the 
calibration and best fit parameters for the MBE case by Hajiabdolmajid et al. (2002, 2003). 

The parameter 𝜙𝑖  represents the friction angle of the crack initiation strength envelope (Walton, 2019). 
The laboratory experiments by Martin (1993) suggest that the crack initiation strength envelope for 

LdB granite is given by: 
𝜎𝑐𝑖(MPa) = 49 + 0.39𝜎3 (1) 

where 𝜎𝑐𝑖 is the crack initiation threshold. This suggests that 𝜙𝑖 for this rock is 0°. However, since this 
is a best-fit line, it can be more adequately represented as a distribution. For this paper, the distribution 
is assumed to be triangular, with a minimum value of 0°, a mode of 0°, and a maximum value of 10°. 
This distribution approximately corresponds to a 95% confidence interval for Eq. (1). The parameter 
𝜙𝑚 is suggested to be a function of the Hoek-Brown value 𝑚𝑖 for laboratory specimens (Walton, 
2019). Martin (1993) conducted triaxial tests on LdB granite to determine the 𝑚𝑖 values, which were 
then input into RocData by Rocscience to calculate the 95% confidence intervals. Based on these 
results and the guidelines provided by Walton (2019), the distribution for 𝜙𝑚was determined to be 
triangular, with a minimum of 47°, a mode of 50°, and a maximum of 60°. 

The last parameter with a probabilistic distribution is 𝑒𝑐
𝑝𝑠

, which has been identified as an intrinsic 

property of the rock and can be measured through cyclic testing (Martin and Chandler, 1994). 

However, due to high cost and extensive nature of these tests, a simplified uniform distribution was 

assumed for this study. According to Walton (2019), the range of critical strain for crystalline rock 
typically falls between 0.001 and 0.003. Therefore, these values were used as the minimum and 

maximum bounds for the uniform distribution in this study. 

3.4 Failure characterization 
Three failure metrics were used to characterize the predicted failure profile. The first metric is the 

depth of failure, 𝑑𝑓, as defined by Martin (1997). The parameter 𝑑𝑓 is measured from the crown of the 

tunnel to the tip of the furthest extent of failure (i.e., notch tip). In the numerical models, this is 
measured from the excavation boundary to the outermost failed zone. The second metric is the angle 

of failure, measured from the first failed zone on the right along the boundary of the excavation to the 

last failed zone. The final metric is the area of failure, calculated by summing the areas of all failed 

zones. Fig. 2 shows these measures. Each metric is recorded and stored for every iteration. 



   Eurock 2025, Trondheim, Norway 

 

5 

 

 
Fig. 2: Representation of the measures of failure 𝑑𝑓, area of failure, and angle of failure 

Further analysis can be conducted by examining the failure characterization in relation to the random 

parameters. By comparing the random parameters of each iteration with 𝑑𝑓, a correlation can be 

established. For example, the 𝑐𝑝 value can be plotted against the 𝑑𝑓, and the resulting plot can be 

analysed to identify the correlation between failure and its strength. These correlations are assumed to 

be linear, and their significance are assessed based on the  𝑅 value and 𝑅2 value. This approach helps 

identify which parameters have the largest effect on the results. Through these correlations, further 
insight into the CWFS approach can be gained, providing future users with a clearer understanding of 

how each parameter affects the model outcomes. 

3.5 Probability of failure 
As a means of providing guidance for support design and risk assessment, the results of the MCS can 
be visualized by showing the probability of failure for each zone. The methodology used for this 
measurement involved recording the state of each zone, failed or not failed, and storing it in an array. 
This process was repeated for all iterations and stored in Python. Once the 10,000 iterations were 
executed, the average probability of failure of each zone was calculated. This probability of failure was 
then overlaid onto the numerical model for graphical visualization 

4 Results 

4.1 Uniform distributions 
The statistical failure characterization is shown in Fig. 3. The predicted 𝑑𝑓 has 𝜇 of 0.50 m and a 𝜎 of 

0.19 m. This represents a slight underestimation compared to the actual 𝑑𝑓 of 0.52 m. As shown in 

Fig. 3a, the distribution of 𝑑𝑓 is right-skewed and approximately normal. The area of failure 

distribution shown in Fig. 3b is also right-skewed and approximately normal with a 𝜇 of 0.44 m2 and 𝜎 

of 0.22 m2. Lasty, the angle of failure, illustrated in Fig. 3c, follows a normal distributed with an 𝜇 of 

71° and a 𝜎 of 9.8°. These results demonstrate that, when using uniform distributions, the mean 

predicted failure profiles tend to be slightly smaller than expected. 

 
Fig. 3: Distributions of the measures of failure resulting from the MCS with uniform distributions for the input parameters a) 

𝑑𝑓, b) area of failure, and c) angle of failure  

The results of the correlations between 𝑑𝑓 and the probabilistic parameters are summarized in Table 

4-1. The two parameters with the highest influence are 𝑐𝑝 and 𝜙𝑖 with 𝑅 values of -0.81 and -0.48, 

respectively. These correlations are shown in Fig. 4. All other parameters exhibit negligible correlation 

levels. The correlation between 𝑐𝑝 and 𝑑𝑓 reveals that as cohesion increases, there is a significant 

observed
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decrease in the depth of failure, with a high level of correlation. Therefore, 𝑐𝑝 appears to be a critical 

parameter for calibration when applying the CWFS approach. 

Table 4-1 Empirical correlations, 𝑅, and 𝑅2 of the strength parameters and the 𝑑𝑓 for the uniform distributions 

Parameter Empirical Correlation 𝑹 𝑹𝟐 

𝑐𝑝 (MPa) 𝑑𝑓 = −0.024𝑐𝑝 + 1.69 -0.81 0.66 

𝜙𝑖 (°) 𝑑𝑓 = −0.032𝜙𝑖 + 0.66 -0.48 0.23 

𝑒𝑐
𝑝𝑠

  𝑑𝑓 = 63.0𝑒𝑐
𝑝𝑠 + 0.38   0.19 0.04 

𝑐𝑟 (MPa) 𝑑𝑓 = −0.004𝑐𝑟 + 0.58  -0.15 0.02 

𝜙𝑚 (°) 𝑑𝑓 = −0.005𝜙𝑚 + 0.78  -0.10 0.01 

 
Fig. 4: Correlation for the results of the MCS with uniform distributions between: a) 𝑑𝑓 and 𝑐𝑝, and b) 𝑑𝑓 and 𝜙𝑖  

The last result to observe is the probability of failure for each zone. These results, shown in Fig. 5a, 

are overlaid onto the observed failure profile from the MBE, as reported by Martin et al. (1997). The 
probability of failure presents a more rounded profile than the “v-notch” observed in the field. This 

highlights the variability of potential failure scenarios and demonstrates that, under the given 

probabilities, the depth of failure is at least 25 cm. 

 
Fig. 5: Probability of failure for each zone from the MCS using: a) uniform distribution for the input parameters compared to 
the observed failure profile (in black), b) complex distribution for the input parameters compared to the observed failure 
profile (in black) 

4.2 Complex distributions 
The statistical characterization of the failure profile is shown in Fig. 6. The 𝑑𝑓 follows a normal 

distribution with a 𝜇 of 0.56 m and a 𝜎 of 0.18 m. This mean 𝑑𝑓 is close to the observed 𝑑𝑓 at the 

MBE, giving confidence to the random parameter selection. The distribution is less skewed than that 

observed for the uniform distributions with a slight overestimation compared to field observations. 

The area of failure exhibits a right-skewed normal distribution, with a 𝜇 of 0.48 m2 and a 𝜎 of 0.25 m2. 

The angle of failure is also normally distributed, with a 𝜇 of 72.2° and a 𝜎 of 8.5°. When comparing 

these non-linear distribution results to those from the uniform distribution, there is no significant 

contrast to suggest that one approach offers a substantially better representation of the statistical 

distribution of failure metrics. 
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Fig. 6: Distributions of the failure metrics resulting from the MCS with complex distributions for the input parameters: a) 𝑑𝑓, 

b) area of failure, and c) angle of failure  

The correlations between the strength parameters and the failure characteristics are summarized in 

Table 4-2. Similar to the uniform distribution case, the most strongly correlated parameters are 𝑐𝑝 and 

𝜙𝑖, with 𝑅 values of -0.81 and -0.43, respectively, as shown in Fig. 7. These results provide greater 

confidence that these parameters are critical for calibration for the effective application of the CWFS 

method. 

Table 4-2  Empirical correlations, 𝑅, and 𝑅2 of the strength parameters and the 𝑑𝑓 for the complex distributions 

Parameter Empirical Correlation 𝑹 𝑹𝟐 

𝑐𝑝 (MPa) 𝑑𝑓 = −0.026𝑐𝑝 + 1.87 -0.81 0.66 

𝜙𝑖 (°) 𝑑𝑓 = −0.033𝜙𝑖 + 0.67 -0.43 0.18 

𝑒𝑐
𝑝𝑠

  𝑑𝑓 = 76.2𝑒𝑐
𝑝𝑠

+ 0.40  0.24 0.06 

𝑐𝑟 (MPa) 𝑑𝑓 = −00.4𝑐𝑟 + 0.63  -0.16 0.03 

𝜙𝑚 (°) 𝑑𝑓 = −0.005𝜙𝑚 + 0.82 -0.08 0.01 

 
Fig. 7: Correlation for the results of the MCS with complex distributions between: a) 𝑑𝑓 and 𝑐𝑝, and b) 𝑑𝑓 and 𝜙𝑖  

Fig. 5b shows the failure probability for each zone in the MCS using the complex distributions. The 

results demonstrate a better correspondence with the observed 𝑑𝑓, with a minimum 𝑑𝑓 of 0.35 m. It 

predicts a greater 𝑑𝑓 at the lowest probability (5%) compared to the uniform distribution scenario. 

Similar to the previous case, the failure profile appears more rounded compared to the “v-notch” 

observed in the field. The roundness in both scenarios is an outcome of the numerical modelling set-
up. In a physical tunnel the failed material is removed from the excavation boundary allowing for 

further redistribution of stresses, while in the numerical models the material, while failed, remains in 

the model, creating artificial confinement. A finer mesh could also allow for a less round failure 

profile. 

5 Conclusion 
The findings of this study demonstrate that using the CWFS approach combined with MCS is a viable 

technique for simulating underground excavations in brittle rock while accounting for uncertainty and 

variability. The methodology outlined in this paper can be used by rock engineering practitioners to 
obtain a quantifiable understanding of risk assessment and support design. A probabilistic-based 

failure profile offers more valuable design insights than a single deterministic failure profile. The 

MCS also enhances our understanding of how input parameters affect the CWFS method’s outcomes. 

It was demonstrated that the most influential parameters are 𝑐𝑝 and 𝜙𝑖, while other parameters have a 

observed
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more limited impact on the simulation results. Further investigation on the mesh dependency of the 

results is required, particularly to investigate the influence of  𝑒𝑝𝑠 on the results. This work can be 
further expanded by incorporating probabilistic stress fields and further analyzing the correlations 

between input parameters and failure characteristics. The use of the methodology outline here can be 

applied to other case scenarios, improving its validity and its capabilities. 
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