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Abstract 
Wedge failure is a common mechanism of failure in jointed rock slopes, which poses significant 

challenges for slope analysis due to its inherent three-dimensional nature. The major parameters that 

affect the stability of rock slopes are the geometry of slopes, rock mass quality, and conditions of 

discontinuities. Various methods are available for examining the stability of rock slopes, such as 

stereographic projections, the limit equilibrium method, analytical method, numerical modelling, and 

the probabilistic approach. In this manuscript, a wedge failure case from Nepal Himalaya is evaluated 

using both limit equilibrium and numerical modelling approaches, and the results are interpreted and 

compared. 

To do so, data are collected by extensive geological field mapping and measured jointing systems are 

assessed in the stereographic projection to identify the mode of failure. The factor of safety (FoS) is 

calculated using the analytical approach and limit equilibrium method (LEM) with 3D rock slope 

analysis. In addition, the distinct element method (DEM) is used to calculate FoS of the jointed rock 

mass. The Mohr-Coulomb (M-C)/Barton-Bandis (BB) failure criterion is applied for the critical failure 

plane. 

It is found that the FoS is consistent with each other. However, the DEM approach yielded with lower 

FoS value providing slightly conservative evaluation. The analytical method is useful for a quick 

assessment of stability, while numerical methods provide deeper insights into slope analysis. The 

DEM is suggested for jointed rock masses, as it incorporates characteristics of discontinuities in its 

calculation. It is also recommended to evaluate rock slope stability under dynamic conditions, which 

are especially crucial for seismically vulnerable zones like Nepal. 
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1  Introduction 
The stability analysis and design of rock-cut slopes is a key issue and a challenging area of rock 

mechanics and rock engineering (Goodman, 1976). The stability of rock slopes depends 

predominantly upon rock mass quality, condition of discontinuities, and geometry of rock slopes. In 

most of the cases, the failure plane is governed by the orientation of discontinuities. The failure 

patterns and instability along the discontinuities are influenced by frictional properties, infilling, 

groundwater conditions, and ground shaking due to earthquakes (Panthi, 2021). Shape and roughness 

properties of discontinuity directly affect the shear strength of the critical failure plane. Various failure 

mechanisms have been implemented to investigate rock slopes by different researchers (Abramson et 

al., 2001; Hoek, 2009; Varnes, 1958; Wyllie & Mah, 2004). There are four major failure mechanisms 

of rock slopes, namely, planar, toppling, wedge, and circular failures (Hoek & Bray, 1981). Wedge 

failure is the most common failure mechanism that occurs when two joints intersect, and the line of 

intersection is sub-parallel and has smaller angle than the slope face (Wyllie & Mah, 2004). The 

suitable conditions for wedge failure have been highlighted in various research in rock slope 

engineering (Hoek et al., 1973; John, 1970; Wyllie & Mah, 2004).  

This manuscript presents an analysis of a potential wedge failure case where analytical, limit 

equilibrium, and numerical approaches of stability assessment is comprehensively used and the 

achieved results are discussed and compared. 

2 Analytical formulation 

The analytical formulation can be used to determine the safety factor (FoS) of a wedge failure under 

the conditions of various joints. The wedge is moving along the line of intersection formed by two 

intersecting joints (Wyllie & Mah, 2004). The FoS is a ratio of resisting force to sliding force along 

the failure plane, as given in Eq. (1). 

𝐹𝑜𝑆 =
𝐹𝑟𝑒𝑠𝑖𝑠𝑡

𝐹𝑠𝑙𝑖𝑑𝑒

 (1) 

Where FoS is the safety factor, Fresist is a global force that prevents sliding, and Fslide is a global force 

that causes sliding. When two planes intersect, an intersecting line should daylight at the rock slope. 

The trend of the intersecting line should be approximately similar dip directions ((±200), as illustrated 

Fig. 1a.  The trend αi and plunge ѱi of the line of intersection of planes A and B can be evaluated using 

Eq. (2) and (3). 

𝛼𝑖 = 𝑡𝑎𝑛−1 (
𝑡𝑎𝑛ѱ𝐴 𝑐𝑜𝑠𝛼𝐴 − 𝑡𝑎𝑛ѱ𝐵 𝑐𝑜𝑠𝛼𝐵

𝑡𝑎𝑛ѱ𝐵  𝑠𝑖𝑛𝛼𝐵 −  𝑡𝑎𝑛ѱ𝐴 𝑠𝑖𝑛𝛼𝐴 

) (2) 

 

ѱ𝑖 = 𝑡𝑎𝑛ѱ𝐴 𝑐𝑜𝑠(𝛼𝐴 − 𝛼𝑖) = 𝑡𝑎𝑛ѱ𝐵 𝑐𝑜𝑠(𝛼𝐵 − 𝛼𝑖) (3) 

 Where αA and αB are the dip directions of planes A and B and ѱA and ѱB  are the dip of these respective 

planes. The safety factor of the critical wedge can be calculated by using Eq. (4) and normal reaction 

at planes A and B, as illustrated in Fig. 1c, evaluated by resolving weight W sinѱi along two planes 

using Eq. (5) and (6). 

𝐹𝑜𝑆 =
(𝑁𝐴 + 𝑁𝐵) 𝑡𝑎𝑛𝜙

𝑊 𝑠𝑖𝑛ѱ𝑖

 (4) 

 

𝑁𝐴 𝑠𝑖𝑛(ꞵ − 0.5 ѯ) = 𝑁𝐵 𝑠𝑖𝑛(ꞵ + 0.5 ѯ) (5) 

 

𝑁𝐴 𝑐𝑜𝑠 (ꞵ − 0.5 ѯ) + 𝑁𝐵  𝑐𝑜𝑠(ꞵ + 0.5 ѯ) =  𝑊 𝑠𝑖𝑛ѱ𝑖 (6) 
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Fig. 1.  Geometry of wedge failure: a) pictorial view of wedge failure; b) side view of wedge failure with line of 

intersection between two planes; and c) resolution of wedge with showing angles ꞵ and ѯ and respective normal reactions. 

 

Fig. 2. Case study: a) perspective view of wedge failure case; b) stereography projection of case study site 

(a) (b) (c)  

 

 

 

 

 

 

Assuming that the sliding wedge can be prevented by mobilization of the frictional angle at both 

planes only and combining Eq. (5) and (6), the final relation, as given in Eq. (7) and (8) is obtained by 

considering same frictional angle for both planes. 

𝑁𝐴 + 𝑁𝐵 =
𝑊 𝑐𝑜𝑠ѱ𝑖 sin 𝛽

𝑠𝑖𝑛 (
ѯ
2

)
 

(7) 

 

𝐹𝑜𝑆 =  
sin 𝛽

𝑠𝑖𝑛 (
ѯ
2

)
∗

𝑡𝑎𝑛𝜙

𝑡𝑎𝑛ѱ𝑖

 
(8) 

Therefore, the wedge stability assessment can be carried out using Eq. (8). 

3 Case study 
The road section selected as a case is located along the Pokhara-Butwal Highway situated at 

Bhalupahad of Syanja district of Nepal having geographical coordinates of 28o 08’ N and 83o 51’ E. 

This area lies in the Lesser Himalayan region and comprises metasandstone rock with predominantly 

two joint sets, as shown in Fig. 2a. 

 

 

 

The failure is structurally controlled and is defined by two discontinuity planes dipping at 55o and 72o 

with dip directions of 205o and 341o respectively. Kinematic analysis is performed to identify the 

mode of failure for this case. The observed failure mechanism is a wedge failure, as illustrated in Fig. 

2b. The plunge and trend of the intersecting plane are 45o and 264o respectively, given by 

stereographic projection and analytical equations (Eq. (2) and (3)). 

(a)                                                                        (b) 
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4 Method of wedge failure 

4.1 Analytical method 

The wedge failure analysis of a rock slope can be analysed using the analytical approach where 

various input parameters such as the geometry of slope, orientation of joints, and shear strength 

properties of joints are used ( 

Table 1). The factor of safety (FoS) is obtained as 1.18 for this rock slope, assuming the same 

frictional angle for both joints. 

𝐹𝑜𝑆 =
𝑠𝑖𝑛810 ∗ 𝑡𝑎𝑛300

𝑠𝑖𝑛26.50 ∗ 𝑡𝑎𝑛450
= 1.18 (9) 

 

Table 1. Information regarding geometry of the rock slope and shear strength properties of joints. 

Planes of 

discontinuity 

Dip 

angle 

Dip 

direction 

Joint shear strength parameters 

Mohr-Coulomb Barton-Bandis 

A 550 2050 ϕA = 300, CA = 0 JRC = 8, JCS = 100 (MPa), ϕr = 24 

B 720 3410 ϕB = 300, CB = 0 JRC = 8, JCS = 100 (MPa), ϕr = 24 

Slope face 710 2630     

4.2 Limit equilibrium method 
Limit equilibrium is another approach that is used for stability analysis of rock slopes. In this method 

of rock slope analysis, the factor of safety (FoS) is calculated to assess whether the slope is stable or 

not. Initially, the deterministic method of limit equilibrium analysis was introduced to analyse the rock 

slope (Jaeger, 1971; Kutter, 1972). The input parameters such as slope geometry, jointing conditions, 

rock mechanical properties, and frictional properties of joints are used to calculate the FoS. Since the 

mapped and assessed parameters have some degree of variations, the factor of safety itself becomes 

also a random variable.  Therefore, a single FoS value does not consider the degree of variation in the 

input parameters. However, RocSlope3 (Rocscience) has the possibility to include this variation while 

calculating FoS. The Mohr-Coulomb failure criterion is used as a constitutive model for the wedge 

analysis where the shear strength properties and orientation of discontinuities as given in Table 1 are 

used. A critical geometry model of the case slope is developed in Rocslope3 which is shown in Fig. 3. 

 

  

Fig. 3. The model output of Rocslope3 (Rocscience): a) pictorial view of wedge sliding, b) plan of wedge sliding  

The  factor of safety for the critical wedge calculated using the limit equilibrium method (LEM) in 

Rocslope3, is found to be 1.17 (Table 2). The sliding wedge intends to move along the trend of 267.5o 

and plunge of 44.7o. 

 

 

(a) (b) 
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Table 2. Wedge failure block information given by Rocslope3 (Rocscience). 

Block weight 

(MN) 

Resisting 

force (MN) 

Driving 

force (MN) 

Factor 

of safety 

Failure 

mode 

Sliding 

trend 

Sliding 

plunge 

No. of 

joint sets 
 

1.43 1.17 1 1.17 Sliding 267.5 44.7 2  

4.3 Distinct element method 

The distinct element method (DEM) is employed to simulate the dis-continuum  rock mass because it 

can incorporate the effect of joints present in the rock mass (ROEST et al., 1990). The Universal 

Distinct Element Code (UDEC) is widely used in rock slope analysis as it can simulate large 

deformation conditions of falling blocks. It is more applicable for dynamic analysis of slope, which 

also allows the effect of seismicity (Board, 1989; Eberhardt & Stead, 1998). Board (1989) has 

suggested Eq. (10) and (11) for estimating normal and shear stiffness of joints in the rock mass. 

𝐾𝑛 =
𝐸𝑚 𝐸𝑟

𝑆(𝐸𝑟 − 𝐸𝑚)
 (10) 

 

𝐾𝑠 =
𝐺𝑚  𝐺𝑟

𝑆(𝐺𝑟 − 𝐺𝑚)
 (11) 

 

 Where Em is the deformation modulus; Er is Young’s modulus of intact rock; Kn is the joint normal 

stiffness; S is the spacing between joints; Gm is the shear modulus of rock mass; Gr is the shear 

modulus of intact rock; Ks is the joint shear stiffness. 

The rule of thumb is that, the joint stiffness in the UDEC model, Kn and Ks should be set to a factor 

times the equivalent stiffness neighboring zone. Eq. (12) and (13) are used to estimate the normal and 

shear stiffness (Board, 1989).  

Where the factor is a multiplication factor (generally set as 10), K and G are bulk and shear moduli 

respectively, and ∆z min is the smallest width of an adjoining zone in the normal directions, as 

illustrated in Fig. 4. 

 

Fig. 4. Zone dimension used in stiffness calculations, modified (Board, 1989). 
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𝐾𝑛 = 𝑓𝑎𝑐𝑡𝑜𝑟 𝑥 𝑚𝑎𝑥 [
(𝐾 +

4
3

𝐺)

∆𝑧 𝑚𝑖𝑛

] (12) 

 

𝐾𝑠 =
𝐸

2(1 + 𝜇)
 (13) 

 

The physical and mechanical properties of intact rock and Joints given in Table 3 are used for UDEC 

model for the rock slope. 

Table 3. Input parameters for the UDEC model. 

Intact rock Joint properties 

γ (MN) E (MPa) ѵ ϕ (0) Kn (GPa/m) Ks (GPa/m) Φj (0) Cj (MPa) 

0.026 35000 0.3 40 20 20 30 0 

In Table 3, γ is the density of intact rock, E is Young’s modulus, ѵ is the Poisson ratio, ϕ is the friction 

angle of intact rock, Kn is the normal stiffness of the joint, Ks is the shear stiffness of the joint, Φj is the 

frictional angle of the joint, and Cj is the cohesion in the joint.  

The factor of safety of this rock slope is evaluated as 1.14, and the failure wedges vector is shown in 

Fig. 5. The history of unbalanced force is obtained from the UDEC model, as illustrated in Fig. 6a that 

ensures the computational time of the rock slope. On the other hand, Fig. 6b highlights the 

displacement history of critical failure wedge over the computational time. 

 

Fig. 5. Pictorial view of UDEC output for displacement vector of failure mass. 

 

 

    UDEC (Version 5.00)

LEGEND

   29-Nov-2024   8:03:08

  cycle     30000

  time  =  1.086E+00 sec

displacement vectors

     maximum =    8.966E-03

  8.966E-04

  1.793E-03

  2.690E-03

  3.587E-03

  4.483E-03

  5.380E-03

  6.277E-03

  7.173E-03

  8.070E-03

  8.966E-03

  9.863E-03

boundary plot

 0.000

 0.400

 0.800

 1.200

 1.600

(*10^1)

 0.200  0.600  1.000  1.400  1.800

(*10^1)

JOB TITLE :  Wedge failure anlysis

Itasca Consulting Group, Inc.

Minneapolis, Minnesota  USA
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Fig. 6. Graphical representation of UDEC history output: a) trend of unbalanced force history; b) trend of deformation history 

of critical wedge mass. 

5 Result and discussions 
The wedge failure analysis of the rock slope at Bhalupahad shows stability for each case assessment 

method used under static conditions. The safety factor obtained through analytical, limit equilibrium, 

and distinct element methods is 1.18, 1.17, and 1.14, respectively. It is noted here that the analytical 

approach provides a simplified assessment of slopes, while the LEM using Rocslope3 offers a more 

comprehensive estimate of the FoS where an uncertainty assessment of the varying inputs can be used. 

The DEM highlights the discontinuous nature of the rock mass and influence of joint behaviour on 

rock slopes. The study has shown that FoS achieved through this approach is slightly less than other 

two approaches. The assessment has shown that the rock slope is stable under static and dry conditions 

and is within the border of failure. It is interpreted that given dynamic and groundwater loading, it is 

likely that the wedge will occur, which can be seen through the failure that have been occurred in the 

past as indicated in Fig. 2a.  

6 Conclusions 
The analytical approach can be applied to assess the initial stability of the rock slope in consideration 

and the numerical methods provide further insights into the stability condition. The DEM is relatively 

more suitable for capturing the effect of discontinuities in the rock mass and dynamic loading. Hence, 

this method should be given priority in stability assessment for discontinuous rock mass. The study 

also shows that the combined approaches can be used for a comprehensive understanding of wedge 

failure mechanism. The FoS obtained from different methods are relatively consistent, the DEM 

yielding the lowest value followed by LEM and analytical approaches, respectively. This study 

emphasizes the importance of integrating available approaches for reliable slope stability assessment. 

Further dynamic analysis should be performed to examine the stability of slopes during seismic events 

and groundwater conditions and predict the needed support system.  
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