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Abstract 
In rockfall protection structures, the dynamic process of stopping or slowing down a falling block is 

significantly complex and influenced by multiple variables. The application of design approaches based 

on Reliability-Based Design (RBD) enables the analysis of how the variability of parameters describing 

a structure affects its performance and provides the structure with a uniform probability of failure. In 

this article, a specific attenuator system was considered, for which a series of explicit dynamic analyses 

were conducted using a finite element code. The system's response must be studied considering the 

variability of the impact conditions and evaluating: the volume, the speed and the rotation of the block, 

and the inclination and position of impact. To reduce the computational cost of these numerical 

simulations, a metamodeling procedure has been introduced, using a mathematical operator to describe 

the response of the attenuator. In this paper, the system behaviour was analysed by varying six 

parameters that describe the block's kinematics and using a Kriging metamodel to perform reliability 

analysis. By substituting the metamodel for the original performance function, the probability of failure 

is calculated, while accounting for the metamodel accuracy. 
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1  Introduction 
Rockfall mitigation has become a pressing concern to safeguard infrastructure and mountainous regions 

prone to risk. Among the available solutions, attenuators are gaining prominence due to their ability to 

intercept and decelerate falling rocks. These systems employ deformable nets to dissipate kinetic energy 

and guide debris safely to the ground. However, their complex dynamic behavior requires a 

comprehensive examination of key performance factors, including impact velocity, rock volume, and 

collision characteristics. 

Conventional protective structure design, governed by Limit State Design (LSD) and Eurocode 7, 

evaluates the kinetic energy of falling rocks against the structure's maximum energy absorption capacity. 

While effective, this approach is less suited to addressing the variability of conditions typical of rockfall 

events. In contrast, Reliability-Based Design (RBD) offers a more advanced framework by 

incorporating uncertainties through a reliability index and a uniform failure probability. This method is 

particularly advantageous for cutting-edge systems like attenuators. 

Numerical modelling has become an essential tool for predicting the behaviour of these systems under 

dynamic impacts and identifying the factors that most significantly influence their performance. This 

research analysed a specific attenuator using three-dimensional simulations in Abaqus (Abaqus 2023), 

taking into account the statistical variability of parameters such as rock size, speed, rotation, impact 

position, and angle. While the Monte Carlo method provides insights into the probabilistic behaviour of 

the system, it comes with a high computational cost. To streamline the process, a Kriging-based 

metamodeling technique was implemented. This approach replaces the detailed performance function 

with a simplified model, allowing the probability of failure to be calculated efficiently while preserving 

accuracy (Dubourg et al., 2013; Depina et al., 2016; Lambert et al., 2021). 

2 Attenuator numerical model 
The attenuation system under study is composed of three modules, each spaced 10 meters apart. The 

structure is supported by 6-meter-high posts with an H-shaped cross-section (HEA180) and cylindrical 

hinge constraints at the base. It is reinforced with seven uphill anchoring cables and two lateral cables, 

all featuring a diameter of 16 mm. The deformable panel is supported by an upper cable, while the lower 

edge is left free to rest on a slope inclined at 45°. 

To optimize the computational effort and element count, the numerical model in Abaqus employed an 

equivalent membrane to replicate the behaviour of the net panel. This approach relied on experimental 

data from punching and tensile tests (Mentani et al., 2018; Thoeni et al., 2013). The 3D geometric 

representation of the model is illustrated in Fig. 1, and Table 1 provides a detailed breakdown of the 

elements assigned to each part of the system in the Abaqus simulations. 

 
Fig. 1 3D Model of the Attenuator system. 

Table 1 Elements Used in the 3D Model in Abaqus 

Component FEM Elements/Beauvoir 

Net panel MEMBRANE - M3D4R: A 4-node quadrilateral membrane with reduced integration 

and hourglass control. ELASTOPLASTIC 

Cables TRUSS - T3D2: A 2-node linear 3D truss. ELASTIC 

Posts BEAM - B31: A 2-node linear beam in 3D space. ELASTIC 

Connection (upper cable/net) Tie constraints, no relative motion between the surfaces. 

Connections (cables/posts) Join constraints, kinematic constraints u1=0, u2=0, u3=0. 

Contact (block/net/slope) General Contact: Normal Behaviour: Hard Contact; Tangential Behaviour: Penalty – 

Friction Coefficient 0.4 
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Block Rigid Body - C3D8R: An 8-node linear brick with reduced integration and hourglass 

control. 

3 RBD analysis procedure 
The Reliability-Based Design (RBD) method provides an advanced framework for the design of passive 

protective structures against rockfall events. In conventional practice, the design of such structures is 

based on energy considerations, comparing the kinetic energy of the falling block (action) with the 

energy absorption capacity of the protective system (resistance). 

The application of partial safety factors, as outlined in Eurocode 7 (EC7), is often complex and does not 

facilitate a direct estimation of the failure probability. In contrast, RBD adds an enhanced layer of 

precision by introducing a reliability index, which ensures a consistent failure probability across 

geotechnical systems (Vagnon et al., 2020). 

This reliability index, symbolized as 𝛽, acts as a measure of structural safety, with the probability of 

failure (𝑃𝑓) calculated using the following Eq.1: 

𝑃𝑓 ≈ 1 − 𝛷(𝛽) = 𝛷(−𝛽) (1) 

 

Where 𝑃𝑓 Probability of failure 

𝛷 Cumulative normal distribution function 

 𝛽 Reliability index 

This index allows for determining the design point coordinates, 𝑥∗, which correspond to the point of 

tangency between the expanding dispersion ellipsoid and the surface defined by the failure criterion. 

3.1 Procedure for Applying RBD to the Considered Attenuator System 
To understand and explain the procedure for determining a uniform failure probability based on 

reliability, a specific attenuator system is considered. 

The application of Reliability-Based Design (RBD) in a rockfall protection system follows four main 

stages, which are outlined in Fig. 2 below. The procedure applied to the chosen attenuator system will 

be described in detail, leading to the calculation of the probability of failure. 

 
Fig. 2 The main stages for applying the RBD approach. 

4 Application of RBD analysis 
This section provides a detailed description of the steps involved in applying the RBD approach to a 

specific attenuator system. The analysis required numerous numerical simulations, optimized by 

combining Python scripts and Abaqus simulations for model definition, result extraction, and 

interpretation. Fig. 3 illustrates the flow chart used for these analyses, which can also be applied to 

subsequent simulations. 
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Fig. 3 Flow chart for RBD analysis in Python and Abaqus 

4.1 Main Failure Mechanisms 
The main failure modes of the system were identified by considering impact scenarios and conditions 

that could lead to structural collapse. These failure modes, based on the system's response after impact, 

are: 

• The block passing through the net, resulting in the rupture of the panel. 

• The attenuator's efficiency falling below 20%. 

Attenuator efficiency refers to the percentage of kinetic energy dissipated in the phase occurring 

approximately 0.5 seconds after the impact, during which the kinetic energy of the block is gradually 

dissipated by the barrier until it stabilizes. The percentage of energy dissipation was calculated using 

the following Eq. 2: 

∆𝐸% =
𝐸𝑖𝑚𝑝 − 𝐸𝑡=0.5 𝑠

𝐸𝑖𝑚𝑝

    [%] (2) 

 

Where ∆𝐸% Percentage of kinetic energy dissipated 

𝐸𝑖𝑚𝑝 Kinetic energy of the block at the moment of impact 

 𝐸𝑡=0.5 𝑠 Kinetic energy of the block at 0.5 seconds after the impact 

In the RBD approach, it is important to define the objectives of the numerical simulations before they 

are conducted. Kinematic histories of the block (position, velocity, acceleration, and kinetic energy) 

during the impact were extracted from the Abaqus models. The ∆𝐸% value was calculated, and panel 

rupture was analysed using a Python code. For simulations where the panel ruptured, a value of 0 was 

assigned to ∆𝐸%enabling the simultaneous evaluation of both failure modes in the structure. 

4.2 Main Failure Mechanisms 
The identification of random variables affecting the energy dissipation of the system is a key aspect of 

the RBD approach. These variables, including block volume, translational and rotational velocities, 

impact angle, and location, can vary significantly depending on the site and are not known beforehand. 

Since the system's overall response cannot be captured by a single load condition, it is necessary to 

consider the statistical variability and assume probabilistic distributions and ranges of variation for each 

variable. Defining these distributions accurately is a complex task and must be based on studies 

regarding block trajectory and volume (Umili et al., 2020). 

The variation ranges and statistical distributions for the random variables used in this study are provided 

in Table 2. Fig. 4 shows the marginal distributions, which were combined using a copula to create a 

joint distribution representing the entire system. No correlation between the parameters was assumed in 

this case. 
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To enhance computational efficiency and reduce costs, a metamodeling approach based on Kriging was 

applied in this study. The construction of the model relied on simulation data obtained through a Design 

of Experiments (DoE) methodology using Latin Hypercube Sampling (LHS) (Toufigh et al., 2018). This 

approach stratifies the input space, ensuring a well-distributed sampling of parameters while minimizing 

the number of samples compared to traditional Monte Carlo methods. A total of 100 valid samples were 

generated, and automated numerical analyses were performed using Abaqus (Figure 5). 

Table 2 Ranges and statistical distributions of the random variables. 

Parameter Min; Max Range Statistical Distribution Statistical Parameters 

(Mean; Std. Dev.) 

Block Volume V [m³] 0.03; 3 Log-normal -1.20; 0.76 

Block Impact Velocity v [m/s] 5; 40 Log-normal 2.65; 0.34 

Impact Angle α [°] -80; 45 Uniform -17.5; - 

Impact Height Z [m] 0.82; 4.5 Normal 2.66; 0.61 

Impact Position Y [m] -14.18; 14.18 Normal 0; 4.73 

Block Rotation at Impact ω [rad/sec] 0; 35 Uniform 17.5; - 

 
Fig. 4 Copula distribution of the random variables. 

4.3 Design Conditions of the Structure 
When designing the protection system, structural parameters such as the panel length, the deformability 

of the mesh, the slope angle, and the height of the posts must be considered, as these factors influence 

both energy dissipation and structural strength. Unlike the random variables, which exhibit statistical 

variability, these parameters are site-specific and define the geometry of the model. Therefore, the 

design configuration must be established upfront, and for each design setup, the probability calculations 

need to be repeated. The analysis presented focuses on a specific attenuator with a 13-meter-long mesh, 

medium deformability, and a 45° inclined slope, while maintaining the other characteristics described 

earlier for the 3D model. 

4.4 Definition of the Performance Function 
The reliability analysis of the considered attenuation system is performed to quantify the effects of 

variability in the set of random variables 𝑋 = [𝑉;  𝑣; 𝜔; 𝛼; 𝑌; 𝑍]𝑇on the ultimate limit state. The 

performance function represents the relationship between the structural resistance capacity and the 

impact energy of the block. The function is defined as (Eq. 3): 

𝑔(𝑋) = 𝑅𝐵 − 𝐸𝑖 = 0 (3) 

 

Where 𝑔(𝑋) The performance function 

𝑅𝐵 Structural resistance capacity 

 𝐸𝑖 The impact energy of the block 

When 𝑔(𝑋) = 0, the system is at the limit of its resistance capacity, while positive or negative values 

indicate, respectively, a state of safety or failure of the system. Defining this function requires a 

computationally intensive process and is time-consuming. One approach to reduce computational 

demands is to approximate 𝑔(𝑋) with a computationally less expensive metamodel. The metamodel is 

typically built by implementing statistical learning methods on the set of observations obtained through 

Design of Experiments (DoE), mapping the inputs into a standard space to facilitate probabilistic 

analysis. In this study, a Kriging metamodel, implemented in a Python code, is used to approximate the 
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performance function 𝑔(𝑋) that describes the system. By using the performance function through the 

metamodel, it was possible to evaluate the probability of failure of the attenuation system, considering 

random variables with different distributions. 

4.4.1 Construction of the Kriging Metamodel 

The Kriging metamodel is built to approximate the performance function 𝑔(𝑋) that describes the system. 

Kriging is an advanced interpolation technique that not only estimates the value of a function at an un-

sampled point but also provides an estimate of the uncertainty associated with this prediction. This 

methodology is widely used in surrogate modeling problems, where the function to approximate is 

complex or computationally expensive to evaluate (Depina et al., 2016). 

Starting from the results of the 100 numerical analyses performed on the samples obtained from the 

Design of Experiments (DoE), the Kriging metamodel was constructed using the algorithm defined in 

the OpenTURNS library, imported into Python (Baudin et al., 2015). The metamodel provides an 

estimate of 𝑔(𝑋) for the generated samples, along with the standard deviation of the estimate at each 

point. 

Kriging regression uses a constant trend and a squared exponential covariance model to establish a 

relationship between the inputs (standardized samples) and the output (performance function results) 

derived from the Abaqus numerical analyses. The constant trend assumes that the function to be 

approximated has a constant mean value across the entire input domain. This is the simplest model and 

is often chosen when the data do not show an evident trend. The covariance model (or kernel) defines 

the spatial relationship between points and describes how closely the values of 𝑔(𝑋) at two nearby points 

in the input space are correlated. The squared exponential covariance model assumes that closer points 

will have more similar values, but the correlation decreases exponentially with distance. Fig. 5 shows, 

as an example, the surrogate performance curve, 𝑔(𝑋), obtained from the metamodel in a 2-variable 

space. The function derived from the simulations must be considered in the space of all 6 variables taken 

into account. 

 
Fig. 5 Scheme of the performance curve obtained with the metamodel, in a 2-variable plane. 

Next, a sampling and refinement process is carried out to improve the estimates of the probability of 

failure. Before performing the sampling, it is necessary to select an initial set of points that effectively 

represent the input space. The k-means clustering algorithm is used to divide the initial samples into 

clusters within the standardized space. The purpose of clustering is to identify "representative" points of 

the input domain, avoiding redundancy or insufficient coverage. The centers of the clusters (or 

representative points) are selected as initial seeds for the subsequent sampling process. 

Once the initial points are chosen, the Metropolis-Hastings method is applied to generate additional 

samples in the standardized space. This method belongs to the family of Markov Chain Monte Carlo 

(MCMC) algorithms and is designed to sample from complex distributions (Au and Beck, 2001). For 

each selected point, the acceptance probability is evaluated based on the performance function, its 

standard deviation, and the probability density at the proposed points. In particular, samples near the 
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threshold 𝑔(𝑋) = 0 are clustered together to identify the representatives that will be used for further 

simulations in Abaqus. 

Five refinement processes were considered, and for each process, 30 analyses were carried out in 

Abaqus. The results of each process were subsequently imported into the Python code to improve the 

accuracy of the probability of failure estimate. 

4.4.2 Construction of the Kriging Metamodel 

Using the results from the metamodel, an initial estimate of the failure probability, 𝑝𝑓𝑒, is calculated. In 

the standardized space, each sample contributes to the failure probability based on its proximity to the 

safety threshold 𝑔(𝑋) = 0. If a sample 𝑥𝑖 is close to or within the failure region (𝑔(𝑋) < 0), its 

contribution becomes more significant. The failure probability is computed as the sum of the 

probabilistic contributions of all samples in the standardized space (Eq. 4): 

𝑝𝑓𝑒 =
1

𝑁
∑ Φ (−

�̂�(𝑥𝑖)

𝜎𝑔(𝑥𝑖)
)

𝑁

𝑖=1
 (4) 

 

Where 𝑝𝑓𝑒 Failure probability 

𝑁 Number of sample 

 𝛷 Cumulative normal distribution function of the standard normal distribution 

 �̂�(𝑥𝑖) the metamodel estimate for the sample 𝑥𝑖 

 𝜎𝑔(𝑥𝑖) the standard deviation of the estimate provided by the metamodel 

Since the calculation of 𝑝𝑓𝑒 is entirely based on metamodel estimates, it may contain errors due to 

inaccuracies in approximating 𝑔(𝑋), particularly in critical regions (Dubourg et al., 2013). To address 

this, a correction factor 𝛼 is calculated through the five refinement processes. This factor is used to 

improve the accuracy of the initial failure probability estimate. 

The correction factor is the ratio between the accurate probability, calculated through numerical 

simulations, and the estimate obtained from the metamodel (Eq. 5): 

𝛼 =
𝑝𝑎𝑐𝑐

𝑝𝑚𝑒𝑡𝑎

 (5) 

 

Where 𝛼 Correction factor 

𝑝𝑎𝑐𝑐 Accurate probability 

𝑝𝑚𝑒𝑡𝑎 Metamodel probability 

The final failure probability is then calculated as (Eq. 6): 

𝑝𝑓 = 𝑝𝑓𝑒 ∙ 𝛼 (6) 

 

Where 𝑝𝑓 Final failure probability 

𝑝𝑓𝑒 Uncorrected probability computed with the metamodel 

𝛼 Correction factor 

For the attenuator system considered, after the third refinement process, the corrected failure probability 

𝑝𝑓 stabilizes at 0.14, indicating an extremely high failure probability for geotechnical structures of this 

type. To achieve acceptable safety conditions, the analysis will need to be repeated with adjustments to 

the structural configuration. 

5 Conclusions 
This paper presents a comprehensive analysis of the application of a reliability-based design (RBD) 

approach, utilizing advanced probabilistic techniques. The main objective was to overcome the 

limitations of traditional deterministic models by implementing a methodology based on failure 

probability, which accounts for uncertainties and variability in design parameters. The Kriging 

metamodeling method was applied to optimize the failure probability calculation and enhance 

computational efficiency. The integration of Kriging provided reliable failure probability estimates, 

optimizing the design process and reducing computational times. This approach represents a significant 

advancement in the design of protection systems, ensuring greater efficiency in the overall design 

process.  
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