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Abstract 
This study developed a machine learning model for predicting the specific charge in cut area of tunnel 
blast designs using data collected from 18 tunnel construction sites. Input variables included round 
length, number of charge holes per area, excavation section coefficient, cross-sectional area, maximum 
and minimum spacing of cut holes, blast cut type, explosive type, RMR, maximum overburden depth, 
and rock type. 

Nine different machine learning models were applied and compared: Linear Regression (LR), Lasso 
Regression, Ridge Regression, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Random Forest (RF), Light Gradient Boosting Machine (LightGBM), Histogram-based Gradient 
Boosting (HGB), and Artificial Neural Network (ANN). The Random Forest model showed the best 
performance with an R² of 0.852 and RMSE of 0.082 on test data. 

SHAP value importance analysis revealed that blast cut type was the most influential factor 
(importance score: 0.1627), followed by minimum spacing (0.0393) and maximum spacing (0.0170). 
Through the developed model, customized blasting designs can be applied to various geological 
conditions in tunnel construction sites, significantly enhancing the efficiency and safety of tunnel 
construction projects. 
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1 Introduction 
The efficiency and accuracy of blasting operations in tunnel construction significantly impacts the 
overall efficiency, safety, and cost of a project. The goal of tunnel blasting operations is to maximize 
blasting efficiency while minimizing vibrations and noise through precise design. To achieve this, key 
design factors such as specific charge, drilling layout and spacing, types of explosives, and cut blasting 
methods must be comprehensively considered. Among these, specific charge is a critical factor in 
blasting design, calculated as the total weight of explosives used divided by the total volume of rock to 
be fragmented. It directly affects rock fragmentation and fly rock distance, playing a vital role in 
determining optimal design conditions and calculating total blasting costs. Moreover, accurate 
prediction of specific charge reduces secondary blasting costs caused by inadequate fragmentation and 
optimizes energy distribution to enhance fragmentation efficiency (Choi et al., 2009; Kahriman et al., 
2001). 

Tunnel blasting is carried out with a single free face, where the rock is initially confined, and a second 
free face is created during the process, fracturing the rock and propelling it away from the free face 
(Min et al., 2005). Cut blasting is the first step in the tunnel blasting process and plays a critical role in 
influencing all subsequent blasting operations, ultimately determining the success of tunnel excavation 
in terms of advance rate, fragmentation, and vibration control. The initial cut area, having only a 
limited free face, requires a higher specific charge and the strongest explosives compared to other 
zones. 

However, the complex conditions of tunnel construction sites often make it challenging to apply 
uniform blasting designs, necessitating customized designs that account for specific geological and 
environmental characteristics. To address these challenges, recent studies have actively explored the 
use of various machine learning models, a branch of artificial intelligence (AI) capable of training on 
complex data patterns to make predictions, for specific charge estimation in tunnel blasting design. 

Previous research has explored various approaches to specific charge prediction. For instance, Alipour 
et al. (2012) developed a model combining Artificial Neural Networks (ANN) and Multiple Variable 
Linear Regression Analysis (MVLRA) to predict specific charge in railway tunnel blasting in Taiwan. 
In a subsequent study, Alipour et al. (2021) applied the Support Vector Machine (SVM) algorithm for 
specific charge prediction, while Taiwo et al. (2024) conducted research using Decision Tree models 
to predict specific charge for blasting operations. 

However, most previous studies have focused on predicting the overall specific charge for tunnel 
blasting, which limits their applicability to the cut area of tunnel blasting. Additionally, according to 
Jong and Lee (2004), tunnel blasting has traditionally relied heavily on the experience of blasting 
engineers, with designs varying based on geological conditions that influence specific charge. 

Therefore, this study aims to develop a quantitative machine learning model for predicting specific 
charge in cut area of tunnel construction projects. To achieve this, data from 18 tunnel blasting 
projects were analyzed to identify key factors influencing specific charge, and various machine 
learning algorithms were applied to derive the optimal predictive model. 

2 Research Methodology 

2.1 Data Collection  
This study collected data from 18 tunnel construction projects, comprising a total of 208 datasets. For 
tunnel blast design analysis, eleven critical variables were selected for determining specific charge in 
cut area. During the data collection process, missing or erroneous data points caused by manual input 
errors or omissions were identified and removed to ensure data quality. 

Based on the tunnel blasting design data, eleven input variables were used for specific charge 
prediction. Round length represents the advance length per blast cycle. Number of charge holes per 
area indicates total number of blast holes divided by face area. Excavation section coefficient is 
calculated using Eq. (1), considering round length and cross-sectional area. 

Excavation section coefficient = ( 1 +  
𝐿𝐿
√𝐴𝐴

 ) 2 (1) 
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Where L Round Length (m)  

A Cross-Sectional Area (m2)  

Cross-sectional area refers to the area of tunnel face. Maximum and minimum spacing in cut area 
represent the largest and smallest distances between adjacent blast holes, respectively. Blast cut type 
indicates the pattern used (Cylinder-cut, V-cut, Double V-cut), while types of explosives are 
categorized as dynamite, emulsion, or high-performance emulsion. RMR (Rock Mass Rating) provides 
geomechanical classification of rock mass quality. Maximum overburden depth measures the greatest 
vertical distance from ground surface to tunnel. Rock type classification is based on geological 
characteristics. The dataset covers diverse geological conditions and construction scenarios, with rock 
grades ranging from I to V according to RMR classification. Data collection focused particularly on 
the cut area characteristics, as this zone typically requires higher specific charge and has significant 
influence on overall blast performance. 

2.2 Model Development and Evaluation 
For the development of specific charge prediction model, data preprocessing was first conducted. 
Categorical data including blast cut type, rock type, and types of explosives were transformed into 
unique binary vectors using the One-Hot Encoding technique. Numerical data were normalized to a 
range of [0, 1] using the Min-Max Scaling technique. 

Nine different machine learning models were developed in this study. First, linear regression-based 
models - Linear Regression (LR), Lasso Regression (Lasso), and Ridge Regression (Ridge) - were 
implemented to analyze linear relationships between variables, with regularization techniques applied 
to prevent overfitting. Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) models were 
employed to account for nonlinearity in the data. Additionally, ensemble models including Random 
Forest (RF), Light Gradient Boosting Machine (LightGBM), and Histogram-based Gradient Boosting 
(HGB) were developed to combine the results of multiple learners. Finally, an Artificial Neural 
Network (ANN) model was structured to learn complex nonlinear relationships. 

The dataset was split into training data (70%) and test data (30%) for model development. The Grid 
Search technique was used for hyperparameter optimization to achieve optimal model performance. 
To enhance model reliability, 5-fold cross-validation was implemented, where the dataset was divided 
into five folds with each fold used once as validation data. 

For model assessment, the coefficient of determination (R²) and root mean squared error (RMSE) were 
selected as performance metrics. SHAP (SHapley Additive exPlanations) analysis was incorporated to 
evaluate the relative importance of input variables in model predictions. 

3 Data Analysis 

3.1 Analysis of Input Variables  
Analysis of the collected data revealed distinct patterns in blasting design parameters across different 
rock grades. These patterns provide insights into how design parameters vary with rock mass 
conditions. 

The specific charge distribution displays a clear relationship with rock grade (Fig. 1(a)). For rock 
grade I, specific charge ranges from 1.2 to 2.8 kg/m³ (average 2.1 kg/m³), while grade V shows a more 
concentrated range of 1.0-1.3 kg/m³ (average 1.1 kg/m³). This relationship reflects the mechanical 
properties of the rock mass, where stronger rocks require higher explosive energy for effective 
fragmentation. 

Round length exhibits similar behavior, as shown in Fig. 1(b), ranging from 2.0-3.5 m in grade I to 
1.0-1.2 m in grade V. The number of charge holes per unit area displays an opposite trend (Fig. 1(c)), 
increasing from 1.7 holes/m² in grade I to 2.2 holes/m² in grade V, with greater variance in lower rock 
grades. 

Design pattern analysis revealed systematic adaptations to rock conditions (Fig. 2). The Cylinder-cut 
method was predominantly used in higher rock grades (63.2% in grade I), while V-cut becomes 
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prevalent in lower grades (62.5% in grade IV). Explosive selection similarly shows systematic 
variation, with high-performance explosives preferred in higher grades (60.5% in grade I) and standard 
emulsion explosives becoming dominant in lower grades (100% in grade V). 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 1 Distribution analysis of blast design parameters according to rock grade: (a) Specific charge, (b) Round length, (c) 
Number of charge holes per area 

 
(a) 

 
(b) 

Fig. 2 Statistical analysis of blasting design patterns according to rock grade: (a) Distribution of blast cut type, (b) 
Distribution of explosive type 

3.2 Model Performance Analysis 
The performance of machine learning models was evaluated using the coefficient of determination 
(R²) and root mean squared error (RMSE), with results summarized in Table 1. The evaluation metrics 
were calculated through 5-fold cross-validation and testing to assess both predictive accuracy and 
model stability. 

Ensemble-based models demonstrated consistently superior performance compared to other 
approaches. The RF model achieved the highest R² (0.852 ± 0.076) and lowest RMSE (0.082 ± 0.020) 
on test data, while maintaining strong performance on training data (R²: 0.985 ± 0.072, RMSE: 0.079 
± 0.018). This indicates robust predictive capability and good generalization. Other ensemble methods, 
HGB and LightGBM, showed similar but slightly lower performance levels, with test R² values of 
0.846 ± 0.077 and 0.840 ± 0.078, respectively. 

Traditional linear regression models (LR, Ridge, Lasso) showed relatively lower performance, with 
test R² values around 0.75, suggesting nonlinear relationships between input variables and specific 
charge. SVM and KNN models demonstrated moderate performance levels (test R²: 0.783 and 0.798, 
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respectively), while the ANN model performed similarly to linear models (test R²: 0.755 ± 0.091), 
indicating that neural network complexity did not provide significant advantages for this prediction 
task. 

Table 1 Performance comparison of machine learning models 

Model Training Test 
R² (mean ± std) RMSE (mean ± std) R² (mean ± std) RMSE (mean ± std) 

LR 0.762 ± 0.089 0.124 ± 0.031 0.751 ± 0.092 0.127 ± 0.033 
Lasso 0.759 ± 0.085 0.125 ± 0.030 0.748 ± 0.090 0.128 ± 0.032 
Ridge 0.761 ± 0.087 0.124 ± 0.031 0.750 ± 0.091 0.127 ± 0.033 
SVM 0.795 ± 0.082 0.115 ± 0.028 0.783 ± 0.085 0.118 ± 0.030 
KNN 0.812 ± 0.079 0.110 ± 0.026 0.798 ± 0.083 0.114 ± 0.028 
RF 0.985 ± 0.072 0.079 ± 0.018 0.852 ± 0.076 0.082 ± 0.020 
LightGBM 0.972 ± 0.074 0.083 ± 0.021 0.840 ± 0.078 0.086 ± 0.023 
HGB 0.976 ± 0.073 0.082 ± 0.020 0.846 ± 0.077 0.085 ± 0.022 
ANN 0.768 ± 0.088 0.123 ± 0.031 0.755 ± 0.091 0.126 ± 0.032 

 

The prediction performance of the RF model is visualized in Fig. 3, where predicted values are plotted 
against actual specific charge values. The scatter plot shows strong agreement between predicted and 
actual values for both training and test datasets, with points closely following the ideal prediction line 
(y=x). This visualization confirms the model's consistent performance across the range of specific 
charge values encountered in the dataset. 

 

Fig. 3 Comparison of actual and predicted specific charge using RF model 

The small standard deviations across all performance metrics suggest stable model behavior, with 
ensemble methods showing particularly consistent performance across different data splits. 

3.3 Variable Importance 
SHAP (SHapley Additive exPlanations) analysis was conducted to evaluate the relative importance of 
input variables in the RF model's prediction of specific charge. Fig. 4 presents the Mean Absolute 
SHAP values for each input variable, providing a quantitative measure of their contribution to the 
model predictions. 

The analysis revealed that blast cut type was the most critical variable in predicting specific charge, 
with a Mean Absolute SHAP Value of 0.1627, significantly higher than other variables. This finding 
indicates that the selection of blast cut pattern has the greatest influence on specific charge 
determination. The second and third most important variables were minimum spacing (0.0393) and 
maximum spacing (0.0170). These results highlight the importance of spacing conditions as key 
design parameters, with minimum spacing showing notably higher importance than maximum spacing 
in determining specific charge. 
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Fig. 4 Group SHAP value importance analysis for specific charge prediction using RF 

Rock type showed a moderate influence with a value of 0.0157, confirming that geological 
characteristics affect explosive quantity requirements. The excavation section coefficient, cross-
sectional area, and number of charge holes per area recorded values of 0.0119, 0.0117, and 0.0094 
respectively, indicating their moderate impact on specific charge prediction. 

Variables such as RMR (0.0045), maximum overburden depth (0.0041), types of explosives (0.0029), 
and round length (0.0008) showed relatively lower importance values. This suggests that while these 
parameters are necessary for comprehensive tunnel design, their direct influence on specific charge 
determination in the cut area is comparatively minor. 

These findings provide valuable insights for prioritizing design considerations in tunnel blasting, 
particularly emphasizing the critical role of blast cut type selection and spacing configuration in 
determining specific charge. 

4 Results and Discussion 
The analysis results demonstrate that the RF model provides reliable predictions of specific charge in 

cut area, with an R² of 0.852 and RMSE of 0.082. This performance level suggests that machine 
learning approaches, particularly ensemble methods, can effectively capture the complex relationships 
between geological conditions and blasting design parameters. 

The variable importance analysis through SHAP values reveals that geometric design factors, 
particularly cut type and spacing, have the strongest influence on specific charge prediction. This 
finding aligns with practical experience where blast geometry plays a crucial role in determining 
explosive requirements. The relatively lower importance of parameters such as RMR and overburden 
depth suggests that while these factors influence overall tunnel stability, their direct impact on cut area 
specific charge is limited. 

The systematic variation of design parameters across rock grades, as shown in the input variable 
analysis, reflects current industry practices. The transition from Cylinder-cut to V-cut methods and 
from high-performance explosives to standard emulsion explosives in lower rock grades demonstrates 
how blasting designs adapt to changing geological conditions. This adaptation is also evident in the 
complementary relationship between round length and charge hole density. 

The model's performance characteristics suggest potential applications in preliminary blasting design, 
particularly in estimating initial specific charge values for cut areas. However, the model should be 
considered a design aid rather than a replacement for engineering judgment, as site-specific conditions 
and practical constraints may require adjustments to the predicted values. 

5 Conclusions 
This study developed a machine learning-based approach for predicting specific charge in tunnel blast 
design, with the following key findings: 
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1. The Random Forest model demonstrated superior predictive performance among nine 
machine learning algorithms, achieving an R² of 0.852 and RMSE of 0.082 on test data. This 
performance level indicates the model's potential as a practical tool for preliminary blast 
design. 

2. Blast cut type emerged as the most influential factor in specific charge prediction (SHAP 
value: 0.1627), followed by minimum spacing (0.0393) and maximum spacing (0.0170). This 
hierarchy of importance provides guidance for prioritizing design parameters. 

3. Analysis of input variables revealed systematic relationships between rock grade and design 
parameters, including specific charge, round length, and blast hole density. These relationships 
provide valuable insights into how blasting design adapts to varying geological conditions. 

The developed model demonstrates the potential of machine learning approaches in optimizing tunnel 
blast design, particularly in the critical cut area. While the model serves as a valuable tool for initial 
design estimation, final designs should incorporate site-specific considerations and engineering 
expertise. 
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