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Abstract 

The large strain behavior of materials is significant in various applications in geomechanics. This 

paper presents the formulation of a finite element model that implements material and geometric 

nonlinearities, as well as coupling with fluid flow through the porous medium. The model is applied 

on axisymmetric problems that are common in tunnels or boreholes. The material is assumed to be 

pressure dependent elastoplastic. Results are presented for a borehole under in situ isotropic stress. A 

large stress and pore pressure is applied to test the response in the large strain domain and the solution 

is compared with that predicted by small strain theory. The results demonstrate that large strain 

analysis provides a more realistic response above a certain strain. 

 

1. Introduction 

Boreholes and tunnels under isotropic in situ stresses are common structures that can be analyzed in 

an axisymmetric setting allowing the simplification of the analysis. There is a possibility that large 

deformations can arise in these problems and given the fact that geomaterials often may experience 

significant volumetric strains, the formulation of the elastoplastic process requires extra care. Finite 

element analysis can be utilized to obtain the solution of the coupled poroelastic and poroelastoplastic 

problem. Geometric nonlinearities arising from the solid’s deformation render the standard problem 

fully coupled even when the permeability of the material is assumed independent of its deformation. 

The elastic axisymmetric problem has been solved (Durban 1987) by quadratures. Durban uses the 

logarithmic (‘Hencky’) strain which is suitable for large strain analysis. However an assumption is 

made that the Cauchy (true) stress is computed directly from the product of Hencky strain and the 

elastic relations but this product should result in the Kirchoff stress instead (Xiao and Chen 2003). 

This assumption is correct when volumetric strains remain relatively small but ground materials may 

experience significant volumetric strains. The elastoplastic problem is solved (Papanastasiou and 

Durban 1997) by Durban and Papanastasiou for a Mohr-Coulomb and a Drucker-Prager yield 

function. Again the above assumption is utilized. (Vrakas and Anagnostou 2013) solve the 

mailto:michael.kattis@ntnu.no


elastoplastic problem with a series approach. But the same assumption is also used and in addition the 

higher order terms of the elastic logarithmic strain are dropped to achieve an exact solution. 

The goal of this study is to develop a framework for an elastoplastic porous medium in axisymmetric 

conditions that can be coupled to fluid flow in the large strain domain. The elastoplastic formulation is 

developed for the Cauchy (true) stress and not the Kirchoff stress since the former is more accurate. 

2. Formulation of the stress – strain law in large strain 

2.1  Hencky elasticity 

In the cylindrical coordinate system r, θ, z of a vertical borehole and for plane strain conditions along 

the z-axis of the borehole and taking advantage of the axisymmetry along θ, the only remaining 

displacement is in the radial direction, i.e. 

𝑢𝑟 ≠ 0,  𝑢𝑧 = 0,  𝑢𝜃 = 0 (1) 

where 𝑢𝑟, 𝑢𝜃, 𝑢𝑧 are the radial, tangential and axial displacement, respectively. 

In addition, for no variation along θ 

𝜕𝑢𝑟

𝜕𝜃
= 0 

(2) 

Because of (1) and (2) the discretization can be carried out with 1 dimensional elements along the 

radial direction. 

For axisymmetric plane strain conditions, the deformation gradient becomes 

[𝐹] =

[
 
 
 
 1 +

𝜕𝑢𝑟

𝜕𝑅
0 0

0 1 +
𝑢𝑟

𝑅
0

0 0 1]
 
 
 
 

 

 

 

(3) 

 

where 𝑅 is the radial coordinate in the initial configuration.  

An appropriate measure of strain for large deformations is the logarithmic ‘Hencky’ strain (Durban 

1987) (Papanastasiou and Durban 1997). The Hencky strain tensor is computed from the deformation 

gradient as 

                       [𝜀𝑡𝑒𝑛𝑠𝑜𝑟] =
1

2
ln( [𝐹][𝐹]𝑇 )               

(4) 

and because the deformation gradient is diagonal, [𝜀𝑡𝑒𝑛𝑠𝑜𝑟] reduces to 

[𝜀𝑡𝑒𝑛𝑠𝑜𝑟] =

[
 
 
 
 ln (1 +

𝜕𝑢𝑟

𝜕𝑅
) 0 0

0 ln (1 +
𝑢𝑟

𝑅
) 0

0 0 0]
 
 
 
 

 

 

 

(5) 

 

Therefore, [𝜀𝑡𝑒𝑛𝑠𝑜𝑟] can be written in Voigt notation as: 



                       {𝜀𝑣𝑜𝑖𝑔𝑡} = [ 𝜀𝑟   𝜀𝜃   0 ]𝛵               (6) 

with 𝜀𝑟 = ln (1 +
𝜕𝑢𝑟

𝜕𝑅
) , 𝜀𝜃 = ln (1 +

𝑢𝑟

𝑅
) 

In the following the subscript “Voigt” will be dropped and therefore, {𝜀} = {𝜀𝑣𝑜𝑖𝑔𝑡} 

Hencky strain can capture the response in the large strain domain since it tends to negative infinity 

when large compressive deformations occur and at positive infinity when large tensile deformations 

occur. 

To calculate the stress, a stress – strain law needs to be formulated. In this case a linear hyperelastic 

law is used for the elastic response. The elasticity matrix for plane strain conditions is given as  

[𝐶𝑒]  =    
𝐸

(1 + 𝜈)(1 − 2𝜈)
[ 
1 − 𝜈 𝜈 𝜈

𝜈 1 − 𝜈 𝜈
𝜈 𝜈 1 − 𝜈

 ] 
 

(7) 

where Ce
 is elastic stiffness matrix, and E, ν are the Young’s modulus and Poisson’s ratio respectively.  

For axisymmetric problems the shear stresses are zero and therefore the relevant rows and columns 

are omitted in the stiffness matrix. The Hencky strain is energy conjugate to the Kirchhoff effective 

stress τ’ (e.g., Xiao and Chen 2003). Thus, for an elastic material the following relationship holds 

{𝜏′}  = [𝐶𝑒]{𝜀} (8) 

with {𝜏′} = [ τr′  τθ′  τz′ ]
T  =  𝒥{𝜎′}       ,   {σ′} = [ σr′  σθ′  σz′ ]

T    

  𝒥 = det[𝐹] = (1 +
𝜕𝑢𝑟

𝜕𝑅
) (1 +

𝑢𝑟

𝑅
) 

where 𝜎𝑟
′ , 𝜎𝜃′ , 𝜎𝑧′  radial, angular and vertical Cauchy (true) stress. 

The total Kirchoff stress used for the calculation of the finite element components is written as 

{𝜏} = {𝜏}′ − 𝒥𝑝𝑓{𝐼} (9) 

where     𝑝𝑓  pore fluid pressure computed from the fluid phase    

 {𝐼} = [1  1  1]𝑇 is the unit vector.  

2.2.   Elastoplasticity 

The stress computation in the elastoplastic regime is based on the multiplicative decomposition of the 

deformation gradient into a plastic and elastic part. Using an exponential return map algorithm along 

with the logarithmic strain measure the return map algorithm reduces to a small strain equivalent 

(Meschke and Liu 1999). Defining {𝜎0′}
  as the Cauchy effective stress at the beginning of the 

increment and assuming only the elastic part of the deformation gradient causes a change in stress, the 

elastic part of the deformation gradient at the beginning of the increment can be computed as 

[𝐹0
𝑒] = [

 exp( 𝜀𝑟
𝑒

0
 ) 0 0

0  exp( 𝜀𝜃
𝑒

0
 ) 0

0 0  exp( 𝜀𝑧
𝑒

0
 )

] 

 
(10) 

  

with  [ 𝜀𝑟
𝑒

0
   𝜀𝜃

𝑒
0
   𝜀𝑧

𝑒
0
 ]𝑇 = 𝒥0[𝐶

𝑒]−1{𝜎0′}
   , 𝒥0 = det[𝐹0]  

And from the multiplicative decomposition: 



[𝐹0] = [𝐹0
𝑒] [𝐹0

𝑝
]  =>    [𝐹0

𝑝
] = [𝐹0

𝑒]−1[𝐹0] (9) 

where  [𝐹0
 ] , [𝐹0

𝑝
]  total and plastic deformation gradients at the beginning of the increment. 

In order for the algorithm to be initiated a trial elastic strain needs to be defined. To do so it is 

assumed that the whole increment is elastic and therefore, the whole increment of the total 

deformation gradient is applied on [𝐹0 
𝑒] to compute the trial elastic deformation gradient. 

[𝐹𝑡𝑟𝑖𝑎𝑙 
𝑒 ] = [Δ𝐹][𝐹0

𝑒]  (12) 

where    [Δ𝐹]   the total deformation gradient increment.     

 [𝐹𝑡𝑟𝑖𝑎𝑙 
𝑒 ]  trial elastic deformation gradient.  

Finally the elastic trial strain {𝜀𝑡𝑟𝑖𝑎𝑙
𝑒 } is computed from equations (4,5,6) using [𝐹𝑡𝑟𝑖𝑎𝑙 

𝑒 ] instead of [𝐹]. 

For large volumetric strains, 𝒥 ≠ 1 and it is inaccurate to assume that the yield criterion is a function 

of the Kirchoff stress. Therefore, the yield and plastic potential functions are formulated with the 

Cauchy effective stress. The trial Cauchy stress is computed from the elastic trial strain as: 

{𝜎𝑡𝑟𝑖𝑎𝑙
′ }  =   

𝐶𝑒{𝜀𝑡𝑟𝑖𝑎𝑙
𝑒 }

𝒥
 

(13) 

Defining 𝑓({𝜎′}, 𝜅), 𝑔({𝜎′}, 𝜅), 𝑝({𝜎′}, 𝜅) as the yield function, plastic potential and hardening 

function, respectively, with 𝜅 being the hardening variable, the algorithm to update the stress proceeds 

as follows.  

A check on whether the trial stress violates the yield function is performed. 

𝑓({𝜎𝑡𝑟𝑖𝑎𝑙
′ } , 𝜅0) ≤ 0 (14) 

If the condition is fulfilled the step is elastic and the algorithm exits and the updated stress is the trial 

stress. If the condition is violated, then the following algebraic equations of the backwards Euler 

scheme must be solved for the unknown variables 𝜎′, Δ𝜆, 𝜀𝑒 , 𝜅 (Meschke and Liu 1999) 

{𝜎′}  =   
[𝐶𝑒]{𝜀

𝑒}

𝒥
   

  (15) 

                                    𝒥({𝜀𝑒} − {𝜀𝑡𝑟𝑖𝑎𝑙
𝑒 }) = Δ𝜆

𝜕𝑔

𝜕{𝜎′}
   (16) 

                                                𝜅 − 𝜅0 = Δ𝜆𝑝({𝜎′}, 𝜅)   (17) 

                                                                          𝑓({𝜎′}, 𝜅) = 0   (18) 

  

where Δ𝜆 is the plastic multiplier, 𝜅0 the initial value of the hardening variable and 𝜀𝑒 is the elastic 

strain. 

3 . Finite element formulation 

For the global solid problem a total Lagrangian formulation is employed. The internal element force 

vector fint, with the Kirchoff stress is computed as 

{𝑓𝑖𝑛𝑡} = ∫ [𝐵𝑇]

 𝑅𝑏

𝑅𝑎

{
𝜏𝑟

𝜏𝜃
}  𝑅 𝑑𝑅  

 

(19) 

  



where   𝐵𝑇  the strain - displacement matrix derived with respect to the initial configuration 

 𝑅𝑎  , 𝑅𝑏 undeformed element left and right radial nodal coordinates. 

[𝐵] is computed as (Heidi Igland Jacobsen 2021) 

[𝐵] = [𝐵𝐿][𝐵0] (20) 

with 

[𝐵𝐿] =

[
 
 
 1 + {

𝜕𝑁 

𝜕𝑅
}
𝑇

{𝑈} 0

0 1 +
{𝑁}𝑇{𝑈}

𝑅

 

]
 
 
 

 ,   [𝐵0] = [

𝜕𝑁1

𝜕𝑅

𝜕𝑁2

𝜕𝑅
…

𝑁1

𝑅

𝑁2

𝑅
…

] 

 

(21) 

 

where 𝑁𝑖 is the element shape function of the 𝑖𝑡ℎ element node and 𝑁 , 𝑈 the vector of element shape 

functions and nodal displacements respectively.  

We solve the coupled problem using an iterative scheme resembling a fixed-point iteration. For each 

increment the solid phase is solved assuming the fluid phase is frozen and vice – versa. Then both the 

fluid and solid phases are solved again with the updated values of each other until convergence is 

reached. The scheme can be written in this way.  

{𝑈𝑖+1 } = {𝑈0} + {Δ𝑈(𝑃𝑖)} 
 

(22) 

{𝑃𝑖+1 } = 𝑓𝑓𝑙𝑢𝑖𝑑( {𝑈𝑖+1} )  
 

(23) 

where  𝑃 , 𝑈 are the global pore pressure and displacement vectors, subscript 𝑖 denotes the iteration 

number and Δ𝑈 , 𝑓𝑓𝑙𝑢𝑖𝑑 represent an iteration in the solid phase and in the fluid phase respectively. The 

convergence criterion is: 

|Δ𝑈(𝑃𝑖)|

|Δ𝑈(𝑃0)|
< 0.001  𝑎𝑛𝑑  

|𝑃𝑖 − 𝑃𝑖−1|

|𝑃1 − 𝑃0|
< 0.001 

 

(24) 

Both conditions of (24) need to be fulfilled for the algorithm to exit. The scheme appears to converge 

for both the elastic and elastoplastic case. 

4. Results 

In the analyzed problem the borehole is loaded externally by an external stress 𝜎𝑒  and a pore fluid 

pressure pe at a far field radius Re while the borehole with internal radius Ri is free from load and pore 

fluid pressure, as shown schematically in Figure 1. An external radius 10 times the internal radius is 

used in the simulations. 

The material is assumed to be elastic perfectly plastic with a Drucker – Prager yield criterion and a 

non associative flow rule. The equations for the yield criterion and plastic potential are: 

𝑓({𝜎}′) = √𝐽2 + 𝐵𝜙𝐼1 − 𝐴  ,   𝑔({𝜎}′) =  √𝐽2 + 𝐵𝜓  
 

(25) 

where  𝐴 =
6𝑐 cos𝜙

√3 (3+sin 𝜙)
   ,    𝐵𝜙 =

2 sin 𝜙

√3 (3+sin 𝜙)
   ,   𝐵𝜓 =

2 sin 𝜓

√3 (3+sin 𝜓)
 

                 𝐼1   = 𝜎′𝑟 + 𝜎′𝜃 + 𝜎′𝑧           

  𝐽2  =
1

6
[ (𝜎′

𝑟 − 𝜎′
𝜃)2 + (𝜎′

𝑟 − 𝜎′
𝑧)

2 + (𝜎′
𝜃 − 𝜎′

𝑧)
2] 



 

Fig. 1. Schematic of a horizontal section of a borehole with the applied external load and pore pressure.. 

with parameters:  

𝜙 = 29° ,   𝜓 = 3°  ,   𝑐 =
𝐸

300
 

 

(26) 

where 𝜙 , and 𝜓 are the internal friction and dilatancy angles, respectively, and c is the cohesion. 

Large deformations are obtained by reaching a relatively large external stress and pore pressure, i.e. 

𝜎𝑒 = 0.5𝐸 ,    𝑝𝑒 = 0.05𝐸 
 

(27) 

It is important for this excessive deformation to occur so that the algorithm can be tested and 

compared for the small strain analysis. 

Figure 2 presents the external stress versus the cavity radial deformation. The stress is normalized 

with the Young’s modulus and the deformation with the initial internal radius.  

The plot for large strains is compared with the response of the small strain analysis with the same 

parameters. The two plots coincide with each other for small deformations. However, after the load 

becomes large the response predicted from small strain theory is not reasonable since the hole 

vanishes without any increase in stiffness. In contrast, the analysis with the large deformation theory 

predicts a much more realistic response since as the hole shrinks the structure becomes infinitely stiff. 

As a result, the point where the entire hole vanishes is approached asymptotically.  

Figure 3 presents the stress radial profiles for the small strain and large strain case at a low stress 𝜎𝑒′ =

0.033𝐸 and for a stress 𝜎𝑒′ = 0.15𝐸 that is close to the maximum that is reached for the small strain analysis. 

The large strain results are plotted with the coordinates of the updated configuration while for the 

small strains the coordinates of the initial configuration are used. In both cases the radial coordinate is 

normalized with respect to the initial internal radius 𝑅𝑖. Again we see similar curves for small and 

large strains at the low stress. The profiles differ quite substantially for the larger stress.  



 

Fig. 2 Cavity closure curve for the external stress vs cavity radial deformation normalized by the Young’s modulus and initial 

cavity radius, respectively, for small and large strain analysis. 

 

Fig. 3. Cauchy effective stress radial profiles for the small and large strain analysis for stress level of  σ’e / E =  0.033  and 

0.15. The large strain curves are plotted with the radial coordinate of the current configuration normalized by the initial 

internal radius. The small strain curves are plotted with the coordinates of the initial configuration.  

Finally in Figure 4 the radial pore pressure profile is plotted for the final step of the large strain 

analysis. For comparison the pore pressure profile of an undeformed configuration is also presented. 

Both are plotted with respect to the initial coordinates which are normalized again by the internal 

initial radius. Because displacements are bigger towards the internal radius, we see a big difference 

for the two profiles. For this reason if displacements (not necessarily strains) are large the fully 

coupled problem should be solved.  

 

Fig. 4. Pore pressure profiles for the deformed and undeformed configuration. The curves are plotted with the initial 

coordinates normalized with the initial internal radius. 



5. Conclusions  

A large-strain elastoplastic analysis for axisymmetric problems has been presented that is fully 

coupled with the pore fluid problem. The analysis employs a pressure dependent elastoplastic yield 

surface and uses the Cauchy stress as the input of the yield function and plastic potential. A 

comparison between a small strain solution is made and we can conclude that for the small strain 

range the small and large strain solutions coincide. However, in the large strain range the small strain 

solution stops giving reasonable results. Further work can target the implementation of different 

constitutive laws more complex than the Drucker – Prager model, as well as materials which have 

permeability varying with the deformation in 2d and 3d analysis. 
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