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Abstract 
This study determines unexposed rock joints based on point cloud analysis. Joint identification is 
crucial to automatic rock mass characterization. The conventional extraction way is based on three-
dimensional point cloud facet fitting, which cannot identify unexposed joints, resulting in an 
underestimation. Therefore, this research proposes an extraction process to capture unexposed rock 
joints. The program is developed on the C++ platform with the CloudCompare and CCCoreLib 
libraries. It completes the fitting of three-dimensional joint traces through processes including color 
filtering, eigenvector computing, linearity computing, cylindrical DB scan clustering, lineation, and 
plane fitting. The fitted planes match the actual fracture locations, proving the effectiveness of the 
proposed fitting algorithm.  
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1  Introduction 
Joint identification is a crucial issue in rock mass characterization, and the identified results can 
further be utilized to build discrete fracture network (DFN) analysis or analyze kinematic stability. The 
conventional way is to manually sketch traces on a photo or perform window sampling, which is time-
consuming. Fortunately, with the advance of survey methods, the maturity of unmanned aerial 
vehicles (UAV) and light detection and ranging (LiDAR) technology will allow engineers to quickly 
and conveniently collect large amounts of spatial information. Among them, the point cloud obtained 
through SFM technology or LiDAR scanning is valuable. A point cloud can be viewed as a collection 
of scanned points on the outcrop surface. By analyzing the point cloud, the outcrop joint can be 
extracted, and the spatial information of the rock joint can be further characterized. This kind of 
analysis method based on aerial survey technology or lidar scanning can not only obtain a large 
number of objective data at one time but also allow engineers to conduct outcrop surveys in a safe 
place. More importantly, these data are digitized, thus avoiding possible omissions caused by manual 
recording and reducing the burden on engineers. Therefore, combing joint identification with point 
cloud analysis is an important key to simplifying the survey methods in future geotechnical 
engineering site surveys.  

In addition, with the improvement of computer performance and the maturity of analysis software, 
rock mechanics engineers can gradually construct more complex geological analysis models. The 
conventional analysis method mostly assumes that the mechanical behavior of the rock mass is 
homogeneous and homogeneous, relies on drilling data to divide the site into layers with specific 
mechanical parameters, and then performs slope stability analysis and calculates the safety factor. This 
analysis mode is not sensitive to the spatial information of joint planes. Even if engineers know the 
importance of joint distribution to rock mass stability, practically, they will only consider the dominant 
orientation and analyze the kinematic stability further. Other spatial information, such as fracture 
intensity, fracture size, orientation variation, etc., are not quantitatively investigated for stability 
analysis.  

Therefore, to better explore the stability of rock slopes, a more comprehensive and quantitative 
investigation and analysis method will inevitably be another crucial issue of future geotechnical 
analysis, and the extraction technology of rock joints is the core issue in terms of quantitative analysis. 
This research aims to develop a quantitative rock joint extraction method so that geotechnical 
engineers can establish the outcrop survey with minimal training and time costing and deliver the 
survey results to the senior engineers for further analysis. 

The identification object of rock joints based on 3D point cloud can be distinguished by plane, edge, 
and trace. Plane means that the joint surface can be identified by a series of point clouds that share a 
similar normal vector. Edge means the joint surface can be determined by the turning point of planes. 
Trace is the unexposed rock joints that appear on the plane surface. The former two can be analyzed 
using a geometric-based method based on 3D coordinate analysis. The latter is hard to be identified by 
spatial analysis because its identification is usually based on color instead of geometry. In this study, 
we focus on trace identification because plane or edge identification has been studied 
frequently(Hackel et al. 2016; Dewez et al. 2016; Daghigh et al. 2022). This study proposed several 
processes to extract rock joints from the point clouds. The methods include color filtering, eigenvector 
computing, linearity computing, cylindrical DB scan clustering, lineation, and plane fitting. The fitted 
planes match the actual fracture locations, proving the effectiveness of the proposed fitting algorithm. 
The research will continue to improve the fitting algorithm and attempt to enhance the accuracy of 
trace identification. 

2 Research methods and results 

2.1 CloudCompare and CCCoreLib 
The CloudCompare software (CloudCompare 2002) is utilized as a major tool for point cloud analysis. 
It is a 3D point cloud processing software that can analyze point cloud data produced by UAV 
photogrammetry or lidar scanning. At the same time, it can also process triangle meshes, polygons, 
and polylines. The purpose of CloudCompare is to quickly detect changes in three-dimensional high-
density point clouds acquired by lidar scanning in industrial facilities or construction sites. Later, it 
added more point cloud analysis algorithms to improve its effectiveness. CloudCompare is an open-
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source software so academic institutions can use abundant functions with CloudCompare without 
expensive cost. In addition, CloudCompare also provides its rich function library for public use, 
allowing users to mobilize analysis functions under the C++ interface. In this study, most point cloud 
processing is done in C++. 

CloudCompare provides a set of basic tools for manually editing and analyzing 3D point clouds, and 
also includes many advanced processing algorithms, such as projection, comparison, distance 
calculation, statistical distribution, point cloud segmentation, point cloud thinning, geometric feature 
estimation, etc., and can present point cloud data in the software in a visual way to help users quickly 
grasp the point cloud situation. CloudCompare can handle most mainstream point cloud data formats, 
including obj, stl, las, ASCII, ply, etc. In addition, many high-end analysis algorithms such as M3C2, 
point cloud feature extraction, etc. can also be introduced through the plug-in function. 

CCCoreLib is part of the core calculation library of CloudCompare and is responsible for most of the 
data structure and algorithm work. This study uses both CCoreLib and CloudCompare function 
libraries. The difference between the two is that CloudCompare is publicly licensed under GPL 3.0, 
therefore the derived programs that use its related functions must be open sourced in accordance with 
the GPL 3.0 public license; while CCCoreLib is under the LGPL 2.0 public license. If developers do 
not have the ability to change the functions Library source code can be used commercially.  

2.2 Site and point cloud data 
The study site is located in the Longdong, northeast region of Taiwan. The photogrammetry was 
implemented by UAV DJI Phantom 4 Pro, and struct from motion technology was used to build 
outcrop point clouds. To improve the analysis efficiency, only a part of the point clouds is utilized for 
analysis (Fig. 1). The number of points is 10,866,409, and the vertical projection area is 8.476×8.914 
m2. Therefore, the vertical point resolution is 143,821 points per m2. 

 

Fig. 1 Study site and point clouds of analysis regions 

2.3 Process 
Fig. 2 shows the fracture extraction process, which can be divided into the following steps: (1) Import 
the original point cloud into the C++ platform based on the CloudCompare library; (2) Perform point 
cloud filtering based on the RGB color information to obtain the point cloud belonging to the trace; (3) 
Perform eigenvalue and eigenvector calculations; (4) Calculate the linearity of the point cloud based 
on eigenvalues; (5) Perform the cylindrical DB Scan algorithm to clustering the trace point cloud; (6) 
Linearize the classified trace point cloud; (7) Perform plane fitting based on identified traces pair; (8) 
Finally obtain traces and the 3D joint surface. 
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Fig. 2 Analysis process. 

2.3.1 Color Filtering 
Color Filtering is the first step to interpret point cloud cracks. The principle of trace analysis of point 
cloud identification is that the program identification logic must be based on the human’s subjective 
judgment. The human eye determines the location of traces based on color information, so the first 
step in the identification process is to analyze the color content (RGB) of the point cloud (Fig. 3). 
Since most of the traces are black, this study summed up the red, green and blue contents of the point 
cloud: 

𝐶 = (𝑅 + 𝐺 + 𝐵)/3 (1) 

 
Where 𝐶 Average of color composition 

𝑅 Ratio of red color content 
𝐺 Ratio of green color content 
𝐵 Ratio of blue color content 

The range of above values are from 0 to 255. In this research, 𝐶 < 80 is set as the threshold of trace 
identification (Fig. 4). After color filtering, traces are clearly exposed, which helps the further 
identification and also improve the efficiency due to the reduce of the number of point clouds. 

 

Fig. 3 Raw point cloud before color filtering. 

 

Fig. 4 Point cloud after color filtering 𝐶 < 80 

2.3.2 Eigenvector Computing 
The linearization degree of traces is the basis for identifying traces in this study, which can be 
determined by analyzing the eigenvalues and eigenvectors of the point cloud. In this study, a radius of 
10 cm around a single point cloud is selected as the analysis region, and the included point clouds are 
called a point cloud group. Then, calculate the geometric center of the point cloud group, find the 
vector (𝑥௡ሬሬሬሬ⃑ ) from each point in the group to the center, and organize all vectors into matrix form: 

𝑋 = ቎

𝑥ଵ
𝑥ଶ
…
ሬሬሬሬ⃑

ሬሬሬሬ⃑

቏ (2) 
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The next step is to find the covariance matrix A of the point cloud group: 

𝐴 = 𝑋்𝑋 (3) 

In this way, by calculating the eigenvalues and eigenvectors of matrix A, the spatial arrangement 
characteristics of the point cloud group can be obtained. If the point cloud group exhibits a highly 
linear relationship, its maximum eigenvalue will be much larger than the second and third eigenvalues, 
and the maximum eigenvector will be in the direction of the trace. 

2.3.3 Linearity Computing 
The calculation of linearity uses the eigenvalues of point clouds to calculate the spatial distribution 
characteristics of point clouds. Linearity is calculated as follows(Weinmann et al. 2013): 

𝐿 =
𝜆ଵ − 𝜆ଶ
𝜆ଵ

 (4) 

 
Where 𝜆ଵ Maximum eigenvalue  

𝜆ଶ Intermediate eigenvalue 
After completing the calculation of eigenvalues, the calculation of linearity is then carried out. Fig. 5 
shows the calculated linearity distribution. It can be found that in the trace area, linearity is above 0.9 
(red area), and only at the crack junction or at the wider crack point cloud, the linearity is lower than 
0.9. Therefore, this study uses 0.9 as the cut-off for trace interpretation and only performs subsequent 
extraction on point clouds with linearity greater than 0.9 (Fig. 6). 

 

Fig. 5 Distribution of linearity. 

 

Fig. 6 Range of linearity > 0.9. 

2.3.4 Cylindrical DB Scan 
DB Scan (Density-based spatial clustering of applications with noise) is a cluster analysis algorithm 
(Ester et al. 1996), which is one of the most commonly used cluster analysis algorithms in data science. 
This algorithm can group nearby points and mark noise points located in low-density areas and can 
find clusters of any shape. Noise points can also be marked simultaneously. The parameters required 
for its analysis are also quite few. It only needs to determine the minimum required point threshold 
and the search radius, which is quite simple and convenient. 

Traditional DB Scan searches based on a set search radius. Fig. 7 is a schematic diagram of the 
operation of DB Scan. Point A is a randomly selected search starting point. DB Scan will count the 
number of data points within the search radius. If the number is greater than the required point 
threshold, point A is the core point, and the data points within the search radius are the data groups to 
be searched. Then, for Repeat the above steps for the data group to be searched. If the point threshold 
is met, the point can be added to the category of point A. Repeat the above steps until the data group to 
be searched is retrieved, and then the next round of search can be performed for unmarked points. If 
the selected point does not meet the required point threshold, it is set as noise (blue point N in Fig. 7). 
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Cylindrical DB Scan is an algorithm obtained by modifying DB Scan in this study. Conventional DB 
Scan searches for data points within a specified radius, so it is a spherical search. However, the filtered 
point cloud in this study is a highly linear 3D data. If the point cloud is searched in a spherical manner, 
it is difficult to meet the point requirements and may cause misjudgment. Therefore, we change the 
search range to a cylindrical shape. This search method also needs to determine the required point 
threshold and search radius. Then the maximum eigenvector of the search point is used as the cylinder 
axial direction, the cylinder radius is the search radius, and the cylinder height is four times the search 
radius (that is, toward the positive and negative maximum feature direction twice the search radius). In 
this way, cluster interpretation of linear cracks can be efficiently performed. Fig. 8 and Fig. 9 are the 
results of Cylindrical DB Scan clustering. Different colors represent different clusters. Each cluster is 
wrapped in an outer frame through plane fitting to facilitate observation (Fig. 9). 

 

Fig. 7 Schematic of DB scan clustering 

 

Fig. 8 Clustering after cylindrical DB scan. 

 

Fig. 9 Frame after clustering. 

2.3.5 Lineation 
After completing the clustering of trace point clouds, each cluster point cloud can be linearly 
simplified. Since the linearity of the point cloud after clustering is quite high, we can start from the 
center point of the cluster, take the maximum eigenvector of the cluster point cloud as the linear 
direction, and the diagonal of the cluster's bounding box is the length of the crack line. A simplified 
trace line can be obtained by extending half of the crack line length from the cluster center to both 
sides in the linear direction. Fig. 10 is the identified simplification traces. It is found that traces highly 
overlap with the traces on point clouds, indicating the extraction works appropriately. 
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Fig. 10 Result of lineation. 

 

Fig. 11 Identified joint planes.  

2.3.6 Plane Fitting 
After completing the identification of traces, the next step is to fit the 3D joint surface. The goal of this 
step is to combine the co-plane 3D traces into a 3D joint plane; otherwise, the position of the crack 
cannot be determined correctly. To avoid fitting unconnected cracks, such as a set of traces that are 
parallel to each other or cracks that are too far apart. This study combines crack line types according to 
the following procedures: 

(1) Decide the threshold distance and calculate the shortest distance between the two fitting traces. If 
the shortest distance between the two fitting traces is greater than the threshold distance, it means that 
the two fitting traces do not belong to the same joint plane or are parallel lines. In this study, the 
threshold distance was set to 10 cm. 

(2) Set the threshold angle, so that the angle between the two traces must be greater than the threshold 
angle. The purpose of this setting is to prevent two parallel traces being fitted into joint planes. In this 
study, the threshold angle is set to 30 degrees (that is, angle between the two traces larger than 30 
degrees is possible to be fitted as a joint plane). 

(3) The length of the two fitting lines to be combined must be greater than 50 cm to avoid 
misjudgment caused by small traces. 

Fig. 11 is a 3D joint plane obtained through the proposed fitting process; the elevation of the point 
cloud has been reduced a little bit to better present the identified traces on the outcrop. It can be found 
that most of the traces cut through the actual location of the traces, so the identification results are 
pretty reasonable. Some co-plane traces have been identified as joint planes, but not all traces are 
identified because those traces may not have enough 3D exposure on the point cloud. 

3 Conclusions 
This study proposes a trace identify processes based on 3D point cloud analysis. The program uses 
C++ as the development platform, uses CloudCompare and CCCoreLib function libraries to perform 
point cloud analysis calculations, and extracts the 3D joint plane through color filtering, eigenvector 
computing, linearity computing, cylindrical DB scan clustering, lineation and plane fitting processes. 
The fitting joint plane matches the actual joint position, which proves that the proposed identify 
algorithm has certain effectiveness. This research will continue to advance the fitting algorithm and try 
to improve the accuracy of trace identification based on point cloud analysis. 
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